Artillery 中使用自定义处理器为 WebSocket 用户生成 JWT 令牌
2025-05-27 19:13:36作者:庞队千Virginia
在 Artillery 负载测试工具中,当我们需要为每个虚拟用户(VU)生成不同的 JWT 令牌来测试 WebSocket 服务时,正确的配置方式至关重要。本文将详细介绍如何实现这一需求。
问题背景
在测试需要认证的 WebSocket 服务时,通常需要在连接时传递 JWT 令牌。每个测试用户应该使用不同的令牌,以模拟真实场景。常见的错误做法是直接在配置层面调用自定义函数,这会导致令牌无法正确生成和传递。
正确实现方式
1. 创建处理器文件
首先创建一个 processor.js 文件,其中包含生成随机令牌的逻辑:
// 预定义的令牌数组
let tokens = [
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..."
];
// 生成随机令牌的函数
function generateRandomToken(userContext, events, done) {
// 从数组中随机选择一个令牌
userContext.vars.token = tokens[Math.floor(Math.random() * tokens.length)];
return done();
}
module.exports = {
generateRandomToken
};
2. 编写测试脚本
在测试脚本中,关键点是将函数调用放在场景流程中,而不是配置层面:
config:
target: "ws://localhost:8080/userMessages"
phases:
- duration: 60 # 测试持续时间(秒)
arrivalRate: 10 # 每秒创建的用户数
processor: "./processor.js" # 指定处理器文件路径
ws:
headers:
x-jwt-token: "{{ token }}" # 使用模板变量引用令牌
scenarios:
- name: "WebSocket 认证测试"
engine: "ws"
flow:
- function: "generateRandomToken" # 在流程中调用函数
- send: "Test message" # 发送测试消息
- think: 5 # 思考时间(秒)
技术要点解析
-
处理器函数调用位置:必须在场景流程中调用,确保每个虚拟用户都能获得独立的令牌值。
-
变量作用域:
userContext.vars中设置的变量只在当前虚拟用户会话中有效。 -
令牌生成策略:示例中使用预定义数组随机选择,实际应用中可根据需要:
- 动态生成有效JWT
- 从外部文件读取
- 调用认证接口获取
-
WebSocket 头设置:通过
ws.headers配置认证头,使用模板语法{{ token }}引用变量。
进阶用法
- 动态令牌生成:可以修改处理器函数,使用库如
jsonwebtoken动态生成有效JWT:
const jwt = require('jsonwebtoken');
function generateDynamicToken(userContext, events, done) {
const payload = { userId: userContext.vars.$uuid };
const token = jwt.sign(payload, 'your-secret-key', { expiresIn: '1h' });
userContext.vars.token = token;
return done();
}
-
令牌生命周期管理:对于长时间运行的测试,可以在处理器中添加令牌刷新逻辑。
-
性能考虑:对于大规模测试,预生成令牌比动态生成更高效。
常见问题解决
-
令牌未定义错误:确保函数在发送请求前被调用,且变量名拼写一致。
-
令牌过期问题:适当设置JWT有效期,或实现刷新机制。
-
性能瓶颈:避免在处理器中进行复杂计算,必要时预生成测试数据。
通过以上方法,可以有效地为 Artillery 负载测试中的每个 WebSocket 连接生成和使用独立的 JWT 令牌,从而更真实地模拟生产环境中的用户行为。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1