基于YAS电商平台的推荐服务Maven项目构建实践
2025-07-08 03:57:58作者:吴年前Myrtle
在YAS电商平台项目中,推荐服务作为提升用户体验和促进销售转化的重要组件,其技术实现需要从基础架构开始构建。本文将详细介绍如何为YAS电商平台搭建推荐服务的Maven项目结构,并设计核心的数据表结构。
推荐服务项目结构设计
推荐服务采用标准的Maven多模块架构,确保项目具有良好的可维护性和扩展性。项目结构主要分为以下几个模块:
- 核心模块(recommendation-core):包含推荐算法实现、向量计算等核心逻辑
 - 服务模块(recommendation-service):提供RESTful API接口,处理业务请求
 - 数据访问模块(recommendation-repository):负责与数据库交互,执行CRUD操作
 - 客户端模块(recommendation-client):为其他服务提供SDK调用能力
 
这种分层架构设计遵循了单一职责原则,各模块职责明确,便于团队协作和后续功能扩展。
产品向量表设计
推荐系统的核心在于产品向量数据的存储和管理。我们设计了专门的product_vectors表来存储商品的特征向量:
CREATE TABLE product_vectors (
    product_id BIGINT PRIMARY KEY,
    vector_data JSONB NOT NULL,
    created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
该表设计考虑了以下关键因素:
- 主键设计:使用product_id作为主键,与商品基础信息表形成一对一关系
 - 向量存储:采用JSONB类型存储向量数据,既保证了查询性能,又提供了灵活性
 - 时间戳:记录创建和更新时间,便于数据追踪和版本管理
 
向量数据存储方案
在实际应用中,我们采用了混合存储策略:
- 结构化存储:将向量元数据和部分特征存储在关系型数据库(PostgreSQL)中
 - 专用向量数据库:对于高维向量数据,使用专门的向量数据库(如Milvus、Pinecone)进行存储和检索
 - 缓存层:引入Redis缓存热门商品的向量数据,提高响应速度
 
这种混合架构既保证了数据的持久性和一致性,又能满足推荐系统对高性能向量检索的需求。
项目构建最佳实践
在构建推荐服务Maven项目时,我们遵循了以下最佳实践:
- 依赖管理:明确定义各模块的依赖关系,避免循环依赖
 - 版本控制:使用dependencyManagement统一管理第三方库版本
 - 构建配置:配置Maven编译器插件,确保代码兼容性
 - 代码规范:集成checkstyle和spotbugs插件,保证代码质量
 - 测试覆盖:配置jacoco插件,监控测试覆盖率
 
通过这些实践,我们建立了一个健壮、可维护的推荐服务基础架构,为后续的算法实现和业务集成奠定了坚实基础。
总结
构建一个高效的推荐服务需要从项目结构和数据存储两方面入手。YAS电商平台通过合理的Maven模块划分和优化的向量存储方案,为推荐系统提供了可靠的技术基础。后续可以在此基础上实现协同过滤、内容推荐等算法,进一步提升平台的个性化推荐能力。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445