基于YAS电商平台的推荐服务Maven项目构建实践
2025-07-08 22:42:33作者:吴年前Myrtle
在YAS电商平台项目中,推荐服务作为提升用户体验和促进销售转化的重要组件,其技术实现需要从基础架构开始构建。本文将详细介绍如何为YAS电商平台搭建推荐服务的Maven项目结构,并设计核心的数据表结构。
推荐服务项目结构设计
推荐服务采用标准的Maven多模块架构,确保项目具有良好的可维护性和扩展性。项目结构主要分为以下几个模块:
- 核心模块(recommendation-core):包含推荐算法实现、向量计算等核心逻辑
- 服务模块(recommendation-service):提供RESTful API接口,处理业务请求
- 数据访问模块(recommendation-repository):负责与数据库交互,执行CRUD操作
- 客户端模块(recommendation-client):为其他服务提供SDK调用能力
这种分层架构设计遵循了单一职责原则,各模块职责明确,便于团队协作和后续功能扩展。
产品向量表设计
推荐系统的核心在于产品向量数据的存储和管理。我们设计了专门的product_vectors表来存储商品的特征向量:
CREATE TABLE product_vectors (
product_id BIGINT PRIMARY KEY,
vector_data JSONB NOT NULL,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
该表设计考虑了以下关键因素:
- 主键设计:使用product_id作为主键,与商品基础信息表形成一对一关系
- 向量存储:采用JSONB类型存储向量数据,既保证了查询性能,又提供了灵活性
- 时间戳:记录创建和更新时间,便于数据追踪和版本管理
向量数据存储方案
在实际应用中,我们采用了混合存储策略:
- 结构化存储:将向量元数据和部分特征存储在关系型数据库(PostgreSQL)中
- 专用向量数据库:对于高维向量数据,使用专门的向量数据库(如Milvus、Pinecone)进行存储和检索
- 缓存层:引入Redis缓存热门商品的向量数据,提高响应速度
这种混合架构既保证了数据的持久性和一致性,又能满足推荐系统对高性能向量检索的需求。
项目构建最佳实践
在构建推荐服务Maven项目时,我们遵循了以下最佳实践:
- 依赖管理:明确定义各模块的依赖关系,避免循环依赖
- 版本控制:使用dependencyManagement统一管理第三方库版本
- 构建配置:配置Maven编译器插件,确保代码兼容性
- 代码规范:集成checkstyle和spotbugs插件,保证代码质量
- 测试覆盖:配置jacoco插件,监控测试覆盖率
通过这些实践,我们建立了一个健壮、可维护的推荐服务基础架构,为后续的算法实现和业务集成奠定了坚实基础。
总结
构建一个高效的推荐服务需要从项目结构和数据存储两方面入手。YAS电商平台通过合理的Maven模块划分和优化的向量存储方案,为推荐系统提供了可靠的技术基础。后续可以在此基础上实现协同过滤、内容推荐等算法,进一步提升平台的个性化推荐能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178