基于YAS电商平台的推荐服务Maven项目构建实践
2025-07-08 06:39:23作者:吴年前Myrtle
在YAS电商平台项目中,推荐服务作为提升用户体验和促进销售转化的重要组件,其技术实现需要从基础架构开始构建。本文将详细介绍如何为YAS电商平台搭建推荐服务的Maven项目结构,并设计核心的数据表结构。
推荐服务项目结构设计
推荐服务采用标准的Maven多模块架构,确保项目具有良好的可维护性和扩展性。项目结构主要分为以下几个模块:
- 核心模块(recommendation-core):包含推荐算法实现、向量计算等核心逻辑
- 服务模块(recommendation-service):提供RESTful API接口,处理业务请求
- 数据访问模块(recommendation-repository):负责与数据库交互,执行CRUD操作
- 客户端模块(recommendation-client):为其他服务提供SDK调用能力
这种分层架构设计遵循了单一职责原则,各模块职责明确,便于团队协作和后续功能扩展。
产品向量表设计
推荐系统的核心在于产品向量数据的存储和管理。我们设计了专门的product_vectors表来存储商品的特征向量:
CREATE TABLE product_vectors (
product_id BIGINT PRIMARY KEY,
vector_data JSONB NOT NULL,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
该表设计考虑了以下关键因素:
- 主键设计:使用product_id作为主键,与商品基础信息表形成一对一关系
- 向量存储:采用JSONB类型存储向量数据,既保证了查询性能,又提供了灵活性
- 时间戳:记录创建和更新时间,便于数据追踪和版本管理
向量数据存储方案
在实际应用中,我们采用了混合存储策略:
- 结构化存储:将向量元数据和部分特征存储在关系型数据库(PostgreSQL)中
- 专用向量数据库:对于高维向量数据,使用专门的向量数据库(如Milvus、Pinecone)进行存储和检索
- 缓存层:引入Redis缓存热门商品的向量数据,提高响应速度
这种混合架构既保证了数据的持久性和一致性,又能满足推荐系统对高性能向量检索的需求。
项目构建最佳实践
在构建推荐服务Maven项目时,我们遵循了以下最佳实践:
- 依赖管理:明确定义各模块的依赖关系,避免循环依赖
- 版本控制:使用dependencyManagement统一管理第三方库版本
- 构建配置:配置Maven编译器插件,确保代码兼容性
- 代码规范:集成checkstyle和spotbugs插件,保证代码质量
- 测试覆盖:配置jacoco插件,监控测试覆盖率
通过这些实践,我们建立了一个健壮、可维护的推荐服务基础架构,为后续的算法实现和业务集成奠定了坚实基础。
总结
构建一个高效的推荐服务需要从项目结构和数据存储两方面入手。YAS电商平台通过合理的Maven模块划分和优化的向量存储方案,为推荐系统提供了可靠的技术基础。后续可以在此基础上实现协同过滤、内容推荐等算法,进一步提升平台的个性化推荐能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217