Doom Emacs 中 LaTeX 模块构建问题的分析与解决
问题背景
近期在 Doom Emacs 项目中,用户报告了一个关于 LaTeX 相关模块构建失败的问题。该问题表现为在执行 doom sync 命令时,系统会报错提示找不到 tex-site.el.in 文件,导致多个模块无法正常构建。
问题表现
用户在全新安装 Doom Emacs 后执行 doom sync 时,会遇到以下典型错误信息:
:pre-build command error in "seq" recipe (file-missing "Opening input file" "No such file or directory" "/path/to/tex-site.el.in")
类似的错误会出现在多个模块中,包括但不限于 seq、auctex 等。错误信息表明系统在构建过程中无法找到预期的 tex-site.el.in 文件。
问题根源
经过技术分析,这个问题源于以下几个关键因素:
-
构建脚本变更:Doom Emacs 最近对 LaTeX 相关模块进行了更新,特别是对
auctex模块的构建逻辑进行了调整。 -
文件结构变化:上游仓库(auctex)最近移除了
tex-site.el.in文件,这使得原有的构建脚本失效。 -
版本兼容性问题:该问题在不同版本的 Emacs 中表现不同,特别是在 Emacs 29 系列版本中更为常见。
解决方案
针对这个问题,Doom Emacs 团队已经发布了修复方案:
-
代码修复:通过提交 944eef9 和 76845a2 两个关键修复,移除了对
tex-site.el.in文件的依赖,并更新了构建逻辑。 -
清理缓存:用户需要执行以下命令来清理旧的构建缓存:
rm -rf ~/.config/emacs/.local/straight/{repos,build-*}/auctex rm -f ~/.config/emacs/.local/straight/build-*-cache.el doom sync
技术细节
这个问题的本质在于构建系统的依赖管理。Doom Emacs 使用 straight.el 作为包管理器,它会缓存包的构建信息和依赖关系。当上游仓库发生结构性变化时(如移除关键文件),这些缓存可能会导致构建失败。
修复方案的核心思想是:
- 识别并移除不再需要的构建步骤
- 确保构建系统能够适应上游仓库的变化
- 提供明确的缓存清理指导,确保用户可以顺利过渡到新的构建流程
最佳实践建议
为了避免类似问题,建议用户:
- 定期更新 Doom Emacs 到最新版本
- 在执行重大更新前备份配置文件
- 遇到构建问题时,首先尝试清理构建缓存
- 关注项目的更新日志,了解重大变更
总结
这个案例展示了开源项目中依赖管理的复杂性,以及及时更新和缓存清理的重要性。Doom Emacs 团队通过快速响应和清晰的修复方案,有效地解决了这个问题,为用户提供了顺畅的使用体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00