QwenLM/Qwen3项目中32B量化模型推理异常问题分析
2025-05-11 19:06:02作者:幸俭卉
问题现象描述
在QwenLM/Qwen3项目使用过程中,部分用户报告在使用vLLM框架推理Qwen2.5-32B-Instruct模型的GPTQ量化版本(特别是Int4精度)时,模型输出会出现大量重复的感叹号"!!!!!!!!",而非预期的正常回答。这一问题在短提示(prompt token数小于50)情况下尤为明显,而当输入token数超过60后,模型输出会恢复正常。
受影响模型版本
经用户反馈验证,此问题主要出现在以下模型变体:
- Qwen2.5-32B-Instruct-GPTQ-Int4
- Qwen2.5-32B-Instruct-GPTQ-Int8
- Qwen1.5-32B-Instruct-GPTQ-Int4(历史版本也存在类似问题)
值得注意的是,同系列的72B和14B量化模型在此环境下表现正常,表明问题可能与32B模型的特定量化实现有关。
环境因素分析
多位用户在不同硬件配置下重现了此问题:
- GPU型号:NVIDIA V100(SM70架构)、A100等
- CUDA版本:12.1-12.4
- vLLM版本:0.6.1.post2至0.6.4.post1
- PyTorch版本:2.3.0+cu121至2.4.0
特别值得注意的是,在V100显卡上该问题持续存在,而部分A100用户通过环境升级解决了问题。
技术排查与临时解决方案
环境配置方案
-
升级方案:有用户报告在全新环境中安装vLLM 0.6.2+PyTorch 2.4.0+CUDA 12.1的组合后问题解决。建议尝试以下步骤:
conda create -n vllm python=3.11 conda activate vllm pip install vllm -
量化方案调整:对于支持Marlin量化的硬件(SM80+),可尝试使用gptq_marlin量化方式:
quantization = "gptq_marlin"
工程临时解决方案
对于无法升级环境或使用Marlin的用户,可采用以下workaround:
- 增加prompt长度:确保输入token数超过50,可通过添加无意义前缀实现
- 添加虚拟对话轮次:在系统提示后添加一轮虚拟对话:
if len(messages) <= 1: messages.extend([ {"role":"user","content":"你好"}, {"role":"assistant","content":"!"*50} ])
问题根源推测
根据现象分析,可能的原因包括:
- 量化参数异常:32B模型的GPTQ量化参数可能存在特定条件下的数值溢出问题
- 注意力机制异常:短序列处理时注意力权重计算可能出现异常
- 硬件兼容性问题:不同GPU架构对量化操作的支持差异导致
建议与展望
对于遇到此问题的用户,建议:
- 优先尝试环境升级方案
- 对于生产环境,可暂时使用72B模型替代
- 关注项目官方更新,等待针对32B量化模型的修复版本
该问题反映了大型语言模型量化部署中的边缘情况处理挑战,未来量化技术的鲁棒性提升将是重要发展方向。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216