Python-MNIST 项目使用教程
2025-05-25 06:55:05作者:温艾琴Wonderful
1. 项目介绍
Python-MNIST 是一个简单易用的纯 Python 编写的 MNIST 和 EMNIST 数据解析库。MNIST 数据库是一个手写数字的数据集,广泛用于图像识别和机器学习领域。EMNIST 是 MNIST 数据库的扩展版本,包含了更多字符的类别。
该项目的目的是提供一个不依赖于第三方库(如 numpy)的数据解析器,使用 Python 标准库中的 struct.unpack 方法直接读取数据文件。
2. 项目快速启动
在开始之前,确保你的系统中已安装 Python 2 或 Python 3。
克隆项目
首先,克隆项目到本地:
git clone https://github.com/sorki/python-mnist.git
cd python-mnist
获取 MNIST 数据
使用以下脚本获取 MNIST 数据:
./bin/mnist_get_data.sh
预览数据:
PYTHONPATH=. ./bin/mnist_preview
安装库
可以通过 PyPi 安装:
pip install python-mnist
或者使用 setup.py 文件安装:
python setup.py install
加载 MNIST 数据
使用以下代码加载训练数据:
from mnist import MNIST
mndata = MNIST('./dir_with_mnist_data_files')
images, labels = mndata.load_training()
如果要加载压缩的 gzip 文件,设置 mndata.gz = True。
3. 应用案例和最佳实践
以下是一个加载 MNIST 数据并进行简单处理的示例:
from mnist import MNIST
import matplotlib.pyplot as plt
mndata = MNIST('./dir_with_mnist_data_files')
images, labels = mndata.load_training()
# 显示第一个图像及其标签
image = images[0].reshape((28, 28))
plt.imshow(image, cmap='gray')
plt.title(f'Label: {labels[0]}')
plt.show()
在处理数据时,可能需要执行以下最佳实践:
- 确保数据集已正确下载并解压到正确的目录。
- 验证数据加载后是否正确,比如通过绘制图像或打印标签。
- 根据需要调整
MNIST类的gz属性来处理压缩或非压缩文件。
4. 典型生态项目
Python-MNIST 可以与多种机器学习库和框架结合使用,例如 TensorFlow、PyTorch 或 Keras。以下是一些在 Python-MNIST 基础上构建的典型生态项目:
- 一个基于卷积神经网络的 MNIST 手写数字识别项目。
- 一个使用 MNIST 数据集进行深度学习模型训练的演示。
- 一个将 MNIST 数据集转换为其他格式(如 CSV)以便于其他工具处理的工具。
通过以上教程,你可以开始使用 Python-MNIST 进行手写数字识别项目的开发和学习。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
426
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
335
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
25
30