Keras中EfficientNet模型权重加载问题的分析与解决方案
2025-04-30 14:59:49作者:邬祺芯Juliet
问题背景
在使用Keras框架构建基于EfficientNetB0的深度学习模型时,开发者发现了一个关键问题:当模型保存为.keras格式后重新加载时,模型的预测性能会显著下降。这个问题特别出现在使用预训练ImageNet权重的情况下,而使用.h5格式保存则不会出现此问题。
问题重现
通过以下代码可以稳定复现该问题:
import numpy as np
import keras
# 构建基于EfficientNetB0的自定义模型
img_size = 224
num_classes = 10
inputs = keras.Input((img_size, img_size, 3))
base_model = keras.applications.EfficientNetB0(weights="imagenet", include_top=False)
x = base_model(inputs)
x = keras.layers.Dense(512, activation="relu")(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.Dropout(rate=0.5)(x)
x = keras.layers.Dense(256, activation="relu")(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.Dropout(rate=0.5)(x)
outputs = keras.layers.Dense(num_classes, activation="softmax")(x)
model = keras.Model(inputs, outputs)
# 保存并重新加载模型
model.save("model.keras")
revived_model = keras.models.load_model("model.keras")
# 测试预测一致性
images = np.random.uniform(size=(2, 224, 224, 3)).astype("float32")
outputs = model.predict(images)
revived_outputs = revived_model.predict(images)
np.testing.assert_allclose(outputs, revived_outputs) # 此处会抛出异常
根本原因分析
经过深入调查,发现问题出在Keras的Normalization层上。具体原因如下:
-
Normalization层有两组关键参数:
- 作为权重的adapted_mean和adapted_std(会被保存到文件中)
- 不作为权重的mean和std(不会被自动保存)
-
在预测时,Normalization层实际使用的是mean和std,而非adapted_mean和adapted_std
-
当使用.h5格式保存时,会触发finalize_state()调用,正确初始化mean和std
-
但使用.keras格式保存时,特别是加载旧版.h5格式的预训练权重时,不会自动调用finalize_state(),导致mean和std保持默认初始值(0向量和1向量)
解决方案
目前有两种可行的解决方案:
临时解决方案
在加载模型后手动调用finalize_state():
revived_model = keras.models.load_model("model.keras")
revived_model.layers[2].finalize_state() # 假设Normalization层是第3层
长期解决方案
等待Keras团队修复此问题。可能的修复方向包括:
- 修改Normalization层的变量保存机制
- 确保加载旧版.h5权重时自动调用finalize_state()
- 更新EfficientNet的预训练权重存储格式
影响范围
此问题主要影响:
- 使用EfficientNet系列模型(B0-B7)的情况
- 使用ImageNet预训练权重的情况
- 模型保存为.keras格式的情况
值得注意的是,MobileNet系列和EfficientNetV2系列不受此问题影响。
最佳实践建议
为避免此类问题,建议开发者:
- 在关键任务中使用.h5格式保存模型
- 在模型加载后验证预测一致性
- 对于使用Normalization层的模型,检查其状态是否正确初始化
- 关注Keras框架的更新,及时升级到修复此问题的版本
通过理解这一问题的本质和解决方案,开发者可以更安全地在项目中使用EfficientNet模型,确保模型训练和部署的一致性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
暂无简介
Dart
639
145
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100