breast_density_classifier 项目亮点解析
2025-05-25 13:50:04作者:韦蓉瑛
项目基础介绍
breast_density_classifier 是一个开源项目,专注于利用深度卷积神经网络进行乳腺密度分类的研究与实现。该项目基于论文 "Breast density classification with deep convolutional neural networks" 的研究成果,提供了两种预训练模型:基于直方图的模型和基于多视图卷积神经网络的模型。这些模型能够对乳腺筛查影像的四个标准视图进行分析,并预测乳腺密度。
项目代码目录及介绍
项目的代码目录结构清晰,主要包括以下几个部分:
images/:包含用于测试的乳腺筛查影像样本。saved_models/:存储预训练好的模型文件。LICENSE:项目的许可证文件,采用 BSD-2-Clause 协议。README.md:项目说明文件,详细介绍了项目的使用方法和相关说明。convert_model.py:用于将 TensorFlow 模型转换为 PyTorch 模型的脚本。density_model_tf.py和density_model_torch.py:分别用于在 TensorFlow 和 PyTorch 环境下运行模型。layers.py、layers_tf.py、layers_torch.py:定义了模型中使用的层结构。models.py、models_tf.py、models_torch.py:实现了模型的构建逻辑。test_inference.py:用于测试模型推理的脚本。utils.py:包含了项目所需的工具函数。
项目亮点功能拆解
- 多模型支持:项目提供了基于直方图和卷积神经网络的两种模型,用户可以根据需求选择合适的模型进行乳腺密度分类。
- 跨框架兼容:模型同时支持 TensorFlow 和 PyTorch 两种深度学习框架,方便用户在不同环境下使用。
- 预训练模型:项目提供了预训练模型,用户可以直接加载模型进行预测,无需从头开始训练。
项目主要技术亮点拆解
- 深度卷积神经网络:项目使用深度卷积神经网络对乳腺影像进行特征提取,提高了分类的准确性和效率。
- 模型转换脚本:提供了 TensorFlow 到 PyTorch 的模型转换脚本,降低了框架迁移的难度。
- 详细的文档和示例:项目包含了详细的文档和使用示例,方便用户快速上手和集成。
与同类项目对比的亮点
- 开源协议友好:采用 BSD-2-Clause 开源协议,对商业和非商业用途都较为友好。
- 文档齐全:相比于其他类似项目,breast_density_classifier 提供了更为详尽的文档,有助于用户理解和使用。
- 框架兼容性强:同时支持 TensorFlow 和 PyTorch,为用户提供了更多选择,特别是在框架迁移或团队协作方面具有优势。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120