GoogleCloudPlatform/cloud-foundation-fabric项目中VPCSC部署的配额项目配置问题分析
在使用GoogleCloudPlatform/cloud-foundation-fabric项目部署VPC服务控制(VPCSC)时,开发者可能会遇到一个常见的认证配置问题。这个问题主要出现在执行1-vpcsc阶段的terraform apply命令时,系统会返回关于配额项目缺失的错误信息。
问题的核心在于Google Cloud API的认证机制要求。当使用本地应用默认凭据(Application Default Credentials)进行认证时,某些特定的Google Cloud API(如cloudasset.googleapis.com和accesscontextmanager.googleapis.com)需要明确指定一个配额项目(quota project)。这个配额项目用于跟踪API使用情况和配额消耗。
错误信息会明确指出两个关键点:一是认证使用了本地应用默认凭据,二是相关API需要一个配额项目但默认情况下未设置。错误代码为403,状态为PERMISSION_DENIED,具体原因是SERVICE_DISABLED。
解决方案相对简单直接。开发者需要在terraform配置中添加明确的provider配置,指定user_project_override为true,并设置正确的billing_project参数。这个billing_project应该指向基础设施即代码(IaC)核心项目,例如示例中的"xxx-prod-iac-core-0"项目。
值得注意的是,这个问题会出现在两个不同的场景中:
- 在查询云资产资源时(google_cloud_asset_resources_search_all数据源)
- 在创建访问策略时(google_access_context_manager_access_policy资源)
因此,完整的解决方案需要同时配置google和google-beta两个provider。这种配置确保了无论是使用标准版还是测试版的Google Cloud Provider,都能正确处理API请求的配额项目要求。
对于刚接触Google Cloud基础设施部署的开发者来说,理解这个问题的关键在于认识到Google Cloud API的配额管理机制。每个API调用都需要归属于一个具体的项目,以便进行配额跟踪和计费管理。当使用本地凭据而非服务账号时,系统无法自动确定应该使用哪个项目来跟踪配额,因此需要显式指定。
这个问题也反映了Google Cloud安全模型的一个特点:即使是拥有足够权限的账号,如果没有正确配置API调用的上下文信息(如配额项目),也会被拒绝访问。这种设计有助于更好地跟踪和控制云资源的使用情况。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00