AWS Deep Learning Containers发布TensorFlow推理Graviton版本v1.23
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,它集成了主流深度学习框架、工具和库,帮助开发者快速部署机器学习工作负载。这些容器经过AWS优化和测试,可直接在Amazon EC2、Amazon ECS、Amazon EKS等服务上运行,大幅简化了深度学习环境的搭建过程。
本次发布的v1.23版本主要针对TensorFlow推理场景,特别优化了基于AWS Graviton处理器的EC2实例。Graviton是AWS自主研发的基于ARM架构的处理器,相比传统x86架构,在性价比方面具有显著优势。
核心镜像特性
该版本提供了TensorFlow 2.16.1推理镜像,支持Python 3.10环境,基于Ubuntu 20.04操作系统构建。作为专为Graviton处理器优化的版本,它包含了以下关键组件:
-
TensorFlow Serving API 2.16.1 - 提供了高性能的模型服务能力,支持模型版本管理、热加载等生产级特性。
-
Python环境 - 基于Python 3.10构建,包含了常用的数据处理和通信库,如:
- PyYAML 6.0.2:配置文件解析
- Cython 0.29.37:Python C扩展支持
- protobuf 4.25.5:高效序列化工具
-
AWS工具链 - 内置了完整的AWS开发工具包:
- boto3 1.35.42:AWS SDK for Python
- awscli 1.35.8:AWS命令行工具
- botocore 1.35.42:boto3的核心组件
-
系统依赖 - 包含了必要的系统库,如GCC工具链和C++标准库,确保深度学习工作负载的高效执行。
技术优势
-
ARM架构优化:针对Graviton处理器的指令集进行了深度优化,相比传统x86架构,在相同成本下可提供更高的推理性能。
-
生产就绪:预配置了必要的开发工具和环境,如emacs编辑器,方便开发者在容器内直接进行调试和开发。
-
版本兼容性:提供多个标签版本支持,包括精确版本(2.16.1)和主版本(2.16)标签,便于不同场景下的版本管理。
-
轻量高效:基于Ubuntu 20.04的最小化安装,减少了不必要的系统开销,同时保证了基础功能的完整性。
适用场景
该镜像特别适合以下应用场景:
-
大规模模型推理服务:在Graviton实例上部署TensorFlow模型服务,实现高性价比的推理工作负载。
-
边缘计算:结合Graviton处理器的能效优势,适用于边缘设备上的模型部署。
-
持续集成/持续部署(CI/CD):作为标准化的模型测试和部署环境,确保开发、测试和生产环境的一致性。
-
混合云部署:一致的容器环境便于在本地和AWS云之间迁移模型服务。
AWS Deep Learning Containers的持续更新,为机器学习工程师提供了开箱即用的解决方案,大幅降低了从模型开发到生产部署的复杂度。这个针对Graviton优化的TensorFlow推理版本,尤其适合注重成本效益的大规模推理场景。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00