AWS Deep Learning Containers发布TensorFlow推理Graviton版本v1.23
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,它集成了主流深度学习框架、工具和库,帮助开发者快速部署机器学习工作负载。这些容器经过AWS优化和测试,可直接在Amazon EC2、Amazon ECS、Amazon EKS等服务上运行,大幅简化了深度学习环境的搭建过程。
本次发布的v1.23版本主要针对TensorFlow推理场景,特别优化了基于AWS Graviton处理器的EC2实例。Graviton是AWS自主研发的基于ARM架构的处理器,相比传统x86架构,在性价比方面具有显著优势。
核心镜像特性
该版本提供了TensorFlow 2.16.1推理镜像,支持Python 3.10环境,基于Ubuntu 20.04操作系统构建。作为专为Graviton处理器优化的版本,它包含了以下关键组件:
-
TensorFlow Serving API 2.16.1 - 提供了高性能的模型服务能力,支持模型版本管理、热加载等生产级特性。
-
Python环境 - 基于Python 3.10构建,包含了常用的数据处理和通信库,如:
- PyYAML 6.0.2:配置文件解析
- Cython 0.29.37:Python C扩展支持
- protobuf 4.25.5:高效序列化工具
-
AWS工具链 - 内置了完整的AWS开发工具包:
- boto3 1.35.42:AWS SDK for Python
- awscli 1.35.8:AWS命令行工具
- botocore 1.35.42:boto3的核心组件
-
系统依赖 - 包含了必要的系统库,如GCC工具链和C++标准库,确保深度学习工作负载的高效执行。
技术优势
-
ARM架构优化:针对Graviton处理器的指令集进行了深度优化,相比传统x86架构,在相同成本下可提供更高的推理性能。
-
生产就绪:预配置了必要的开发工具和环境,如emacs编辑器,方便开发者在容器内直接进行调试和开发。
-
版本兼容性:提供多个标签版本支持,包括精确版本(2.16.1)和主版本(2.16)标签,便于不同场景下的版本管理。
-
轻量高效:基于Ubuntu 20.04的最小化安装,减少了不必要的系统开销,同时保证了基础功能的完整性。
适用场景
该镜像特别适合以下应用场景:
-
大规模模型推理服务:在Graviton实例上部署TensorFlow模型服务,实现高性价比的推理工作负载。
-
边缘计算:结合Graviton处理器的能效优势,适用于边缘设备上的模型部署。
-
持续集成/持续部署(CI/CD):作为标准化的模型测试和部署环境,确保开发、测试和生产环境的一致性。
-
混合云部署:一致的容器环境便于在本地和AWS云之间迁移模型服务。
AWS Deep Learning Containers的持续更新,为机器学习工程师提供了开箱即用的解决方案,大幅降低了从模型开发到生产部署的复杂度。这个针对Graviton优化的TensorFlow推理版本,尤其适合注重成本效益的大规模推理场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00