MM-Interleaved 项目使用教程
2024-10-10 05:57:31作者:苗圣禹Peter
1. 项目目录结构及介绍
MM-Interleaved 项目的目录结构如下:
MM-Interleaved/
├── docs/
│ └── examples/
├── mm_interleaved/
│ ├── configs/
│ │ └── release/
│ ├── models/
│ │ └── utils/
│ │ └── ops/
│ └── scripts/
├── assets/
├── OUTPUT/
├── LICENSE
├── README.md
├── evaluate.py
├── inference.py
├── requirements.txt
├── slurm_run.sh
└── train.py
目录结构介绍
- docs/: 包含项目的文档和示例文件。
- examples/: 包含示例输入文件。
- mm_interleaved/: 项目的主要代码目录。
- configs/: 包含项目的配置文件。
- release/: 包含发布版本的配置文件。
- models/: 包含模型的实现代码。
- utils/: 包含模型使用的工具代码。
- ops/: 包含自定义操作的实现。
- utils/: 包含模型使用的工具代码。
- scripts/: 包含下载预训练模型的脚本。
- configs/: 包含项目的配置文件。
- assets/: 用于存放预训练模型和其他资源文件。
- OUTPUT/: 用于存放生成的输出文件。
- LICENSE: 项目的许可证文件。
- README.md: 项目的介绍和使用说明。
- evaluate.py: 用于评估模型的脚本。
- inference.py: 用于推理的脚本。
- requirements.txt: 项目依赖的Python包列表。
- slurm_run.sh: 用于在SLURM集群上运行的脚本。
- train.py: 用于训练模型的脚本。
2. 项目启动文件介绍
inference.py
inference.py 是用于推理的启动文件。它支持图像和文本的交错生成。使用方法如下:
python -u inference.py --config_file=mm_interleaved/configs/release/mm_inference.yaml
evaluate.py
evaluate.py 是用于评估模型的启动文件。它支持在多个基准数据集上进行零样本评估。使用方法如下:
bash slurm_run.sh $[GPUS] $[GPUS_PER_NODE] $[JOB_NAME] $[QUOTATYPE] $[PARATITION] evaluate.py /mm_interleaved/configs/release/mm_eval.yaml
train.py
train.py 是用于训练模型的启动文件。它支持在SLURM集群上进行分布式训练。使用方法如下:
bash slurm_run.sh $[GPUS] $[GPUS_PER_NODE] $[JOB_NAME] $[QUOTATYPE] $[PARATITION] train.py /mm_interleaved/configs/release/mm_pretrain.yaml
3. 项目的配置文件介绍
mm_inference.yaml
mm_inference.yaml 是用于推理的配置文件。它定义了推理过程中使用的模型、数据路径和其他参数。
mm_eval.yaml
mm_eval.yaml 是用于评估的配置文件。它定义了评估过程中使用的模型、数据路径和其他参数。
mm_pretrain.yaml
mm_pretrain.yaml 是用于预训练的配置文件。它定义了预训练过程中使用的模型、数据路径、训练参数和其他配置。
这些配置文件位于 mm_interleaved/configs/release/ 目录下,用户可以根据需要修改这些配置文件以适应不同的任务和环境。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120