Text-Embeddings-Inference项目中BGE-M3模型的分词问题分析
2025-06-24 12:25:03作者:宣利权Counsellor
在自然语言处理领域,分词是文本处理的基础环节,直接影响后续的语义理解和特征提取效果。本文针对Text-Embeddings-Inference项目中BGE-M3模型的分词结果与Transformers库不一致的问题进行深入分析。
问题现象
当使用Text-Embeddings-Inference服务的/tokenize接口处理中文句子"这是一个文本向量化的测试句子"时,返回的分词结果与直接使用Transformers库的分词结果存在明显差异。具体表现为:
- 虽然token ID序列完全一致
- 但token文本内容出现不匹配
- 部分token文本显示为空字符串
技术背景
BGE-M3模型采用基于SentencePiece的分词器,这类分词器通常会将文本分割为子词单元。在中文处理中,一个常见现象是多个汉字可能被合并为一个token,这与传统的中文分词有所不同。
问题根源
通过分析发现,Text-Embeddings-Inference服务在返回分词结果时,仅通过token ID反向查找原始文本片段,而没有正确调用分词器的解码方法。这导致:
- 对于合并token(如"这是一个"),服务尝试从原始文本中截取对应位置
- 但实际分词器内部可能采用不同的合并策略
- 对于特殊token(如空格标记"▁"),服务未能正确识别
解决方案
该问题已在项目的最新提交中得到修复。主要改进包括:
- 统一使用分词器的解码方法获取token文本
- 正确处理特殊token的显示
- 确保与Transformers库的分词结果保持一致
实践建议
对于使用类似中文嵌入模型的开发者,建议:
- 始终验证分词结果是否符合预期
- 对于关键业务场景,考虑实现自定义分词预处理
- 注意模型更新可能带来的分词策略变化
分词一致性对于语义理解任务至关重要,特别是在跨系统集成时,确保各组件使用相同的分词策略可以避免潜在的语义偏差问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217