首页
/ Charades 活动识别——从基础到深度学习的开源实践

Charades 活动识别——从基础到深度学习的开源实践

2024-05-29 17:18:57作者:范靓好Udolf

Charades Starter Code 是一个由 Gunnar Atli Sigurdsson 贡献的开源项目,旨在实现对视频中活动的识别。这个项目不仅提供了在 Torch 和 PyTorch 中的 Two-Stream 网络实现,还包含了 Two-Stream+LSTM 的网络结构,为研究和应用提供了一站式的解决方案。

项目介绍

该项目的目标是复制 Simonyan 和 Zisserman 的“两流卷积网络”以及 Joe Yue-Hei Ng 等人的“超越短视频:用于视频分类的深度网络”的研究成果。通过结合RGB与Flow两个网络的预测结果,可以在 Charades 数据集上达到18.9%(Two-Stream)和19.8%(LSTM)的分类精度。

项目技术分析

代码组织清晰,分别训练RGB网络和Flow网络,每个网络都与单个活动类别的标签配对,形成类似于标准CNN的softmax训练设置。网络采用VGG-16架构,RGB部分预训练于Image-Net,Flow部分预训练于UCF101。此外,项目还包括下载预训练模型的脚本。测试阶段,网络以批处理大小为25运行,对所有图像进行评分并聚合输出,或者利用所有25个输出进行定位。

项目及技术应用场景

Charades Starter Code 可广泛应用于智能视频监控、社交媒体内容分析、智能家居系统中的行为识别,甚至在无人驾驶汽车等领域。例如,通过对家庭环境中的日常活动进行识别,可以提升智能家居系统的交互性和安全性;在视频监控中,该技术可以帮助识别异常行为,提高公共安全。

项目特点

  1. 多平台支持:支持Torch和PyTorch两种主流深度学习框架。
  2. 预训练模型:提供预训练的RGB和Flow模型,加快模型的开发和验证速度。
  3. 易于扩展:基础代码设计灵活,可轻松添加新的网络层或调整现有架构。
  4. 高性能:在Charades数据集上的表现证明了其在活动识别任务中的有效性。

总的来说,Charades Starter Code 是一款强大的工具,对于希望深入理解和实践视频活动识别的研究人员和开发者来说,这是一个不容错过的资源。立即加入,开启你的活动识别之旅吧!

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
9
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
flutter_flutterflutter_flutter
暂无简介
Dart
671
155
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
260
322
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1