Lyra多平台构建指南:Linux、Android、Mac、Windows全攻略
2026-01-29 12:08:42作者:胡唯隽
Lyra是一款极低比特率的语音压缩编解码器,专为高效语音传输设计。本指南将详细介绍如何在Linux、Android、Mac和Windows四大主流平台上构建Lyra项目,帮助开发者快速部署这一强大的语音压缩技术。
📋 准备工作
在开始构建前,请确保您的系统已安装以下工具:
- Bazel构建系统
- Git版本控制工具
- 对应平台的SDK(如Android NDK)
首先克隆项目仓库:
git clone https://gitcode.com/gh_mirrors/lyra3/lyra
cd lyra
🐧 Linux平台构建
Linux是Lyra开发的主要平台,构建步骤如下:
- 安装依赖:
sudo apt-get install build-essential python3
- 执行构建:
bazel build -c opt lyra/cli_example:encoder_main
bazel build -c opt lyra/cli_example:decoder_main
- 验证构建结果:
构建完成后,可在
bazel-bin/lyra/cli_example/目录下找到encoder_main和decoder_main可执行文件。
🤖 Android平台构建
Lyra提供了完整的Android示例项目,构建步骤如下:
-
配置Android环境: 确保已安装Android SDK和NDK,并设置
ANDROID_HOME环境变量。 -
执行构建:
bazel build -c opt lyra/android_example:lyra_android_example --config=android_arm64 --copt=-DBENCHMARK
- 构建命令行工具(可选):
bazel build -c opt lyra/cli_example:encoder_main --config=android_arm64
bazel build -c opt lyra/cli_example:decoder_main --config=android_arm64
Android示例项目位于lyra/android_example/目录,包含完整的Activity和资源文件。
🍎 Mac平台构建
Mac平台构建与Linux类似,但需要注意以下几点:
- 安装Xcode命令行工具:
xcode-select --install
- 使用Bazel构建:
bazel build -c opt lyra/cli_example:encoder_main
bazel build -c opt lyra/cli_example:decoder_main
🖥️ Windows平台构建
Windows平台需要使用Bazel的Windows版本和MSVC编译器:
- 安装依赖:
- 安装Visual Studio 2019或更高版本
- 安装Bazel for Windows
- 执行构建:
bazel build -c opt lyra/cli_example:encoder_main
bazel build -c opt lyra/cli_example:decoder_main
🧪 测试构建结果
构建完成后,建议使用项目提供的测试数据进行验证:
# 使用编码器编码测试音频
./bazel-bin/lyra/cli_example/encoder_main \
--model_path=lyra/model_coeffs \
--input_path=lyra/testdata/sample1_16kHz.wav \
--output_path=encoded.lyra
# 使用解码器解码
./bazel-bin/lyra/cli_example/decoder_main \
--model_path=lyra/model_coeffs \
--input_path=encoded.lyra \
--output_path=decoded.wav
测试数据位于lyra/testdata/目录,包含多种采样率的音频文件和编码示例。
📚 项目结构解析
Lyra项目主要包含以下关键目录:
- lyra/cli_example/:命令行工具示例
- lyra/android_example/:Android应用示例
- lyra/model_coeffs/:模型系数文件
- lyra/testing/:测试相关代码
构建配置文件:
- WORKSPACE:项目依赖配置
- BUILD:根目录构建规则
- toolchain/cc_toolchain_config.bzl:工具链配置
通过本指南,您可以在各种平台上轻松构建Lyra项目,体验其高效的语音压缩能力。如需深入了解Lyra的工作原理,请参考项目源代码和技术文档。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
扒前端网页代码工具Teleport Ultra:一键获取网页源码,开启学习新篇章 PCIExpressM.2规范Rev1.1:掌握下一代存储接口技术 SSD和HDD硬盘修复利器:Victoria v5.35,让硬盘焕然一新 Cadence常用封装库资源:助力设计工程师效率提升 Questasimwin64GCC10.7C百度云安装包:助力数字集成电路设计与验证 开源小型电子烟方案:打造极致吸烟体验 牛津词典txt版:随时随地查单词的便捷工具 Win7-USB3.0-Creator-V3-Win7Admin.zip资源介绍:Windows 7安装U盘加入USB3.0驱动支持工具 Pytorch入门教程下载:轻松掌握深度学习利器 Rslogix500 7.0中文版下载仓库:轻松掌握AB小型PLC编程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134