LiveKit Agents 语音转文字示例更新与实现解析
2025-06-06 14:12:12作者:薛曦旖Francesca
LiveKit Agents 是一个开源的实时音视频通信框架,其语音转文字(Transcription)功能在最新版本中经历了API的重大变更。本文将详细介绍这一变更背景、技术实现细节以及开发者如何适配新版本。
旧版实现的问题
在旧版LiveKit Agents中,语音转文字功能通过STTSegmentsForwarder类实现,该类负责将语音识别结果转发到聊天室。然而随着API演进,这个类已经从核心库中移除,导致原有示例代码无法运行。
新版API的变化
新版API主要做了以下调整:
- 移除了专门的STTSegmentsForwarder转发器
- 将transcription模块从livekit.agents迁移到了livekit.rtc包下
- 提供了更灵活的事件监听机制处理语音识别结果
适配新API的技术方案
开发者可以采用以下两种方式处理语音识别结果:
1. 自定义转发器实现
async def _transcript_forwarder():
"""自定义转发器实现"""
async for ev in stt_stream:
if ev.type == SpeechEventType.FINAL_TRANSCRIPT and ev.alternatives:
transcript = ev.alternatives[0].text
segment_id = datetime.now().isoformat()
final_segment = rtc.TranscriptionSegment(
id=segment_id,
text=transcript,
start_time=0,
end_time=0,
language=ev.alternatives[0].language or "",
final=True,
)
final_transcription = rtc.Transcription(
participant_identity=participant.identity,
track_sid=track.sid,
segments=[final_segment],
)
await ctx.room.local_participant.publish_transcription(
final_transcription
)
2. 使用事件监听机制
新版推荐使用会话事件监听来处理语音识别结果:
@session.on("conversation_item_added")
async def handle_transcription(item):
"""处理会话项添加事件"""
# 处理语音识别结果
print(f"收到转录内容: {item.text}")
最佳实践建议
- 错误处理:在转发语音识别结果时,务必添加异常处理逻辑
- 空内容过滤:忽略空白或无意义的识别结果
- 时间戳处理:合理设置segment的开始和结束时间
- 语言识别:充分利用API提供的语言识别功能
总结
LiveKit Agents 1.0对语音转文字API进行了重构,移除了专门的转发器类,转而采用更灵活的事件驱动模型。开发者需要更新代码以适配这些变更,可以选择实现自定义转发器或直接使用新提供的事件监听机制。这一变化虽然带来了短暂的适配成本,但长期来看提供了更灵活、更强大的语音处理能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258