Supervison项目中的NMS功能失效问题分析与解决
2025-05-07 08:52:19作者:龚格成
问题背景
在计算机视觉目标检测任务中,非极大值抑制(Non-Maximum Suppression, NMS)是一个关键的后期处理步骤,用于消除冗余的检测框。Supervision作为一个流行的计算机视觉工具库,其Detections类提供了with_nms方法来执行这一操作。
问题现象
在使用Supervision库时,开发者发现Detections.with_nms()方法无法正常工作。具体表现为当输入包含多个重叠检测框时,NMS操作未能按预期消除冗余框。
问题分析
通过深入分析,发现问题根源在于输入数据的格式不正确。在提供的示例中,虽然看似构造了合理的检测框数据,但实际上输入格式与NMS处理函数的预期不符。
关键点在于:
- NMS算法通常需要检测框的坐标格式为(x1,y1,x2,y2)
- 置信度分数需要单独处理
- 类别ID需要正确对应
解决方案
正确的做法是确保输入数据严格符合NMS处理函数的格式要求:
- 检测框坐标必须规范化
- 置信度分数需要单独提取
- 类别ID需要正确映射
代码示例
以下是正确使用with_nms方法的示例:
# 正确格式化的检测框数据
xyxy = np.array([
[0.1, 0.1, 0.5, 0.5],
[0.2, 0.2, 0.6, 0.6],
[0.1, 0.1, 0.5, 0.5]
])
# 置信度分数
confidence = np.array([0.9, 0.8, 0.85])
# 类别ID
class_id = np.array([1, 1, 2])
# 创建Detections对象
detections = Detections(
xyxy=xyxy,
confidence=confidence,
class_id=class_id
)
# 应用NMS
filtered_detections = detections.with_nms(threshold=0.5)
技术要点
- NMS原理:NMS通过计算IoU(交并比)来消除重叠框,保留最高置信度的检测结果
- 类别感知NMS:当class_agnostic=False时,NMS会分别处理不同类别的检测框
- 阈值选择:IoU阈值的选择直接影响NMS的严格程度,通常设置在0.3-0.7之间
最佳实践
- 在使用NMS前,确保检测框坐标已经归一化
- 根据应用场景选择合适的IoU阈值
- 对于多类别检测,考虑是否使用class_agnostic模式
- 在关键应用中进行NMS效果的视觉验证
总结
Supervision库的NMS功能本身是可靠的,问题主要源于输入数据格式的不规范。理解NMS的工作原理和正确准备输入数据是解决问题的关键。通过规范数据格式和合理配置参数,可以充分发挥NMS在目标检测任务中的作用,提高检测结果的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178