Semi Design Table 组件 rowSelection.getCheckboxProps 属性优化解析
Semi Design 是一个优秀的企业级设计系统,其 Table 组件提供了丰富的功能以满足复杂业务场景的需求。在最新版本中,开发团队修复了一个关于 rowSelection.getCheckboxProps 属性的重要问题,这个改进对于使用表格选择功能的开发者来说具有重要意义。
问题背景
在表格组件的使用中,rowSelection 属性允许开发者配置行选择功能。其中的 getCheckboxProps 方法用于为每一行的选择框设置额外属性。在之前的实现中,该方法允许返回包含 checked 或 defaultChecked 属性的对象,这实际上会导致选择状态管理的混乱。
问题本质
选择框的状态管理应该由 Table 组件内部统一处理,通过 selectedRowKeys 等属性来控制。当开发者通过 getCheckboxProps 返回 checked 或 defaultChecked 属性时,会与组件内部的状态管理产生冲突,导致不可预期的行为。
这种设计违反了 React 的状态管理原则,即单一数据源原则。理想情况下,选择状态应该只由一个地方控制,而不是同时在组件内部和外部属性中定义。
解决方案
在 v2.62.0 版本中,Semi Design 团队修复了这个问题。现在:
- getCheckboxProps 返回的对象中如果包含 checked 或 defaultChecked 属性,这些属性将被忽略
- 类型定义(TypeScript接口)也相应更新,明确排除了这些属性
- 选择状态完全由 selectedRowKeys 和相关的回调函数控制
最佳实践
基于这一改进,开发者在使用 Table 的选择功能时应该:
- 避免在 getCheckboxProps 中返回 checked/defaultChecked 属性
- 使用 selectedRowKeys 状态和 onChange 回调来管理选择状态
- 对于需要禁用某些行选择的场景,仍然可以使用 disabled 属性
- 其他自定义属性(如 name)可以正常使用
技术实现细节
在底层实现上,Semi Design 团队可能采用了属性过滤的方式,在将属性传递给实际的 Checkbox 组件前,移除了可能引起冲突的 checked 相关属性。这保证了状态管理的单一性,同时保持了 API 的向后兼容性。
升级建议
对于正在使用旧版本 Semi Design 的开发者:
- 检查项目中是否在 getCheckboxProps 中使用了 checked/defaultChecked
- 将这些状态管理迁移到 selectedRowKeys 和 onChange 回调中
- 升级到 v2.62.0 或更高版本以获得更稳定的行为
这一改进体现了 Semi Design 团队对 API 设计一致性和状态管理严谨性的重视,使得表格选择功能更加可靠和可预测。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00