Tachyon项目中Groth16 Circom与Rapidsnark性能对比分析
背景介绍
在零知识证明领域,性能优化一直是开发者关注的重点。Tachyon项目作为一个高性能的零知识证明系统,其内部实现了多种证明方案。本文将重点分析Tachyon项目中Groth16 Circom实现与Rapidsnark在RISC0包装器下的性能差异问题。
性能问题初现
在Ubuntu 22系统环境下,使用13代Intel Core i9-13980HX处理器进行基准测试时,开发者发现:
- 未包装的简洁证明耗时74秒
- 使用Rapidsnark的完整证明耗时156秒
- 使用Tachyon Circom实现的完整证明耗时400秒
这一结果明显不符合预期,因为理论上Tachyon的实现应该具有更好的性能表现。
问题诊断过程
初始构建配置
最初的Docker构建配置中,使用了以下命令构建Tachyon的证明器:
bazel build --config linux //:prover_main
这种配置下,编译器优化级别较低,且没有启用多线程支持,导致性能表现不佳。
优化级别调整
通过修改构建参数,启用最大优化级别:
bazel build --config maxopt //:prover_main
这一调整显著提升了性能,使Tachyon的实现时间从400秒降至104秒,但仍略慢于Rapidsnark的52秒。
多线程支持启用
进一步分析发现,构建时未启用OpenMP多线程支持。添加以下构建参数后:
bazel build --@kroma_network_tachyon//:has_openmp --config maxopt //:prover_main
最终性能表现得到显著改善,Tachyon实现耗时降至50秒,与Rapidsnark的52秒基本持平。
技术要点分析
-
编译器优化级别:在密码学计算密集型应用中,编译器优化级别对性能影响巨大。maxopt配置启用了最高级别的优化。
-
并行计算:现代零知识证明系统大量使用并行计算来加速证明生成。OpenMP支持使得计算可以充分利用多核CPU资源。
-
构建系统配置:Tachyon项目使用Bazel构建系统,正确的构建标志对最终性能至关重要。
最佳实践建议
对于需要在Tachyon项目中使用Groth16 Circom实现的开发者,建议:
- 始终使用
--config maxopt
标志进行构建,确保编译器优化 - 添加
--@kroma_network_tachyon//:has_openmp
标志启用多线程支持 - 对于CUDA兼容设备,可以考虑使用Tachyon提供的CUDA构建版本获得更好性能
- 参考项目vendors/circom目录下的README文件获取最新构建指南
结论
通过正确的构建配置,Tachyon项目的Groth16 Circom实现可以达到与Rapidsnark相当的性能水平。这一案例也提醒开发者,在性能敏感的应用中,构建参数的细微差别可能导致显著的性能差异。对于零知识证明系统这类计算密集型应用,优化构建配置是获得最佳性能的必要步骤。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









