首页
/ 《AnimeFace 2009 使用教程》

《AnimeFace 2009 使用教程》

2024-09-21 00:38:38作者:裴锟轩Denise

1. 项目目录结构及介绍

AnimeFace 2009 是一个用于动漫/manga 脸部和特征点检测的开源项目。以下是项目的目录结构及其简单介绍:

animeface-2009/
├── animeface-ruby/             # Ruby语言编写的AnimeFace 2009核心代码
├── appendix/                  # 可能包含一些附加的文件或脚本
├── build.sh                    # 构建脚本,用于配置和编译项目
├── clean.sh                    # 清理脚本,用于清除构建产生的文件
├── gitignore                   # git忽略文件列表
├── LICENSE                     # 项目许可证文件
├── NOTICE                      # 通知文件,可能包含对某些内容的声明
├── README.md                   # 项目自述文件,包含项目信息和说明
└── sample.rb                   # 示例脚本,用于演示如何使用AnimeFace 2009进行脸部和特征点检测

2. 项目的启动文件介绍

项目的启动主要通过 sample.rb 文件来进行。这个 Ruby 脚本是一个简单的示例,它展示了如何使用AnimeFace 2009库来处理图片,并检测图片中的脸部及特征点。

以下是 sample.rb 的简单使用说明:

# 加载AnimeFace 2009库
require_relative 'animeface-2009-master/animeface-ruby/AnimeFace'

# 读取输入图片并进行脸部和特征点检测
# <input_image> 是需要检测的图片路径
output_image = AnimeFace::FaceDetector.detect('<input_image>')

在使用之前,需要确保已经正确安装了所有依赖项,并且运行了 build.sh 脚本来构建项目。

3. 项目的配置文件介绍

AnimeFace 2009 的配置主要通过代码中的参数设置来控制,并没有单独的配置文件。在使用时,可以调整 sample.rb 或其他相关 Ruby 脚本中的参数来改变检测行为。

例如,当使用 face_collector.rb 脚本准备数据集时,可以通过以下参数来调整收集行为:

# 使用face_collector.rb脚本收集脸部图片
# --src <image dir> 指定源图片目录
# --dest <output dir> 指定输出目录
# --threshold <0~1> 设置检测阈值
# --margin <0~> 设置边距
face_collector_rb --src <image dir> --dest <output dir> --threshold <0~1> --margin <0~>

配置参数的具体含义和用法可以在项目提供的文档或源代码的注释中找到详细说明。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
611
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
383
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0