Apache Ignite中通过JCache API启用原生持久化功能的技术指南
2025-06-10 03:31:55作者:滑思眉Philip
背景与概念解析
Apache Ignite作为内存计算平台,其原生持久化(Persistence)功能允许将内存中的数据持久化到磁盘,实现数据的可靠存储。当开发者通过JCache(JSR-107)标准API使用Ignite时,仍可充分利用这一企业级特性。
核心配置方法
要在JCache实现中启用Ignite原生持久化,需要通过CacheConfiguration进行深度定制。以下是关键配置步骤:
- 创建Ignite配置实例
IgniteConfiguration cfg = new IgniteConfiguration();
- 配置持久化存储参数
// 启用持久化
DataStorageConfiguration storageCfg = new DataStorageConfiguration();
storageCfg.getDefaultDataRegionConfiguration().setPersistenceEnabled(true);
cfg.setDataStorageConfiguration(storageCfg);
- 通过JCache Provider创建缓存
CachingProvider provider = Caching.getCachingProvider();
CacheManager cacheManager = provider.getCacheManager();
// 创建Ignite特定的缓存配置
CacheConfiguration<Integer, String> cacheCfg = new CacheConfiguration<>("persistentCache");
cacheCfg.setWriteThrough(true); // 启用写穿透
cacheCfg.setReadThrough(true); // 启用读穿透
// 创建持久化缓存
Cache<Integer, String> cache = cacheManager.createCache("persistentCache",
new MutableConfiguration<Integer, String>()
.setStoreByValue(false)
.setStatisticsEnabled(true)
.setTypes(Integer.class, String.class));
高级配置选项
- 数据区域调优 可配置不同的数据区域(Data Region),为每个区域单独设置:
- 持久化开关
- 初始/最大内存大小
- 淘汰策略
- 页面替换算法
- WAL(预写日志)配置 通过DataStorageConfiguration可调整:
- WAL模式(FULL, LOG_ONLY等)
- WAL归档路径
- 自动清理阈值
- 检查点配置 优化检查点相关参数:
- 检查点频率
- 并行写入线程数
- 缓冲区大小
使用注意事项
- 首次启动要求 首次启用持久化时需格式化持久化文件,可通过以下方式实现:
Ignition.start(cfg).cluster().active(true);
- 性能考量
- 持久化会带来约10-15%的性能开销
- 建议SSD存储介质
- 合理配置WAL和检查点参数以平衡性能与可靠性
- 集群部署
- 确保各节点持久化配置一致
- 推荐配置相同的持久化路径
- 注意磁盘空间监控
典型应用场景
- 金融交易系统
- 保证交易数据不丢失
- 快速故障恢复
- 物联网数据处理
- 处理设备高频数据
- 断电数据保护
- 实时分析平台
- 内存级处理性能
- 数据持久化保障
通过合理配置,开发者可以在标准JCache API下充分利用Ignite的原生持久化能力,构建高性能且可靠的数据处理系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248