使用DeepSpeed训练Yi-34B大模型的长上下文优化实践
2025-05-28 15:53:27作者:毕习沙Eudora
背景介绍
Yi-34B是01.AI开发的一款340亿参数规模的大型语言模型。在实际应用中,用户经常需要处理超长文本序列,因此扩展模型上下文长度至32K甚至200K成为重要需求。然而,当上下文长度增加到32K以上时,显存占用会急剧增加,导致训练过程中出现显存不足的问题。
显存挑战分析
在处理长上下文序列时,显存占用主要来自以下几个方面:
-
注意力机制计算:Transformer架构中的自注意力层计算复杂度与序列长度呈平方关系,当序列长度从4K增加到32K时,显存需求将增加64倍。
-
激活值存储:前向传播过程中产生的中间激活值需要保存在显存中用于反向传播,这些激活值的数量与序列长度成正比。
-
KV缓存:在推理阶段,键值缓存(KV Cache)会占用大量显存,其大小与序列长度和注意力头数直接相关。
解决方案探讨
DeepSpeed Zero优化
DeepSpeed的Zero优化策略可以有效减少显存占用:
- Zero Stage 1:仅优化器状态分区
- Zero Stage 2:优化器状态+梯度分区
- Zero Stage 3:参数、优化器状态和梯度全部分区
对于Yi-34B这样的超大模型,推荐使用Zero Stage 3,它可以将模型参数分散到多个GPU上,显著降低单个GPU的显存压力。
模型并行技术
单纯的DeepSpeed数据并行可能不足以处理极长序列,需要结合模型并行技术:
- 张量并行:将单个矩阵乘法运算拆分到多个GPU上执行
- 流水线并行:将模型按层划分到不同设备
- 序列并行:专门针对长序列设计的并行方式,将序列维度拆分
官方在训练200K上下文版本的Yi-34B时,采用了6节点(每节点8张A800)的硬件配置,结合Megatron-LM的模型并行技术实现。
实践建议
对于资源有限的开发者,可以尝试以下优化策略:
- 梯度检查点:通过牺牲部分计算性能来换取显存节省
- 激活值压缩:使用混合精度训练或激活值量化
- 注意力优化:实现Flash Attention等高效注意力变体
- 序列分块处理:将长序列拆分为多个子序列分别处理
注意事项
- 超长上下文训练需要精心调整学习率等超参数
- 不同并行策略间的通信开销需要平衡
- 监控显存使用情况,及时发现瓶颈
- 考虑使用梯度累积来增大有效batch size
通过合理组合这些技术,可以在有限硬件资源下实现对Yi-34B等大模型的长上下文训练。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218