解决GLM-4多GPU运行中的显存不足问题
2025-06-03 04:43:43作者:幸俭卉
问题背景
在使用GLM-4这类大型视觉语言模型时,显存不足是一个常见挑战。特别是当用户尝试在多GPU环境下运行GLM-4V-9B模型时,即使配备了两块24GB显存的A10显卡,仍然会遇到"CUDA out of memory"的错误。
问题分析
许多开发者会自然地想到使用PyTorch的DataParallel来实现多GPU并行计算,期望通过这种方式增加可用显存总量。然而,这种理解存在误区:
- DataParallel的工作原理是将输入数据分割到不同GPU上,每个GPU上都有一份完整的模型副本
- 模型本身仍然需要完整加载到每个GPU上,因此显存需求并没有减少
- 对于GLM-4V-9B这样的超大模型,单卡24GB显存可能不足以容纳整个模型
解决方案
针对GLM-4这类大型模型的多GPU运行,推荐采用以下方法:
1. 使用模型并行技术
与数据并行不同,模型并行将模型的不同层分配到不同的GPU上,真正实现了显存的扩展使用。可以考虑:
- 手动实现模型层拆分
- 使用DeepSpeed等框架的模型并行功能
- 采用Tensor Parallelism技术
2. 利用vLLM等优化推理框架
vLLM是一个专为大模型推理优化的框架,具有以下优势:
- 支持多GPU的显存共享
- 实现了高效的内存管理
- 提供PagedAttention等优化技术
3. 调整生成参数
在无法改变硬件配置的情况下,可以尝试:
- 降低max_length参数值
- 使用更小的batch size
- 尝试不同的精度模式(如FP16)
实践建议
对于GLM-4V-9B这类视觉语言模型,建议采用以下部署策略:
- 优先考虑使用vLLM等优化框架进行多卡部署
- 如果必须使用原生PyTorch,考虑实现模型并行而非数据并行
- 对于资源受限的环境,可以尝试量化技术减少模型显存占用
- 合理设置生成参数,平衡输出质量和显存使用
总结
处理大型视觉语言模型的显存问题需要深入理解并行计算原理。DataParallel并不适合解决显存不足的问题,而应该考虑模型并行或专用推理框架。对于GLM-4这类模型,vLLM多卡部署是一个值得尝试的高效解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248