解决GLM-4多GPU运行中的显存不足问题
2025-06-03 05:48:20作者:幸俭卉
问题背景
在使用GLM-4这类大型视觉语言模型时,显存不足是一个常见挑战。特别是当用户尝试在多GPU环境下运行GLM-4V-9B模型时,即使配备了两块24GB显存的A10显卡,仍然会遇到"CUDA out of memory"的错误。
问题分析
许多开发者会自然地想到使用PyTorch的DataParallel来实现多GPU并行计算,期望通过这种方式增加可用显存总量。然而,这种理解存在误区:
- DataParallel的工作原理是将输入数据分割到不同GPU上,每个GPU上都有一份完整的模型副本
- 模型本身仍然需要完整加载到每个GPU上,因此显存需求并没有减少
- 对于GLM-4V-9B这样的超大模型,单卡24GB显存可能不足以容纳整个模型
解决方案
针对GLM-4这类大型模型的多GPU运行,推荐采用以下方法:
1. 使用模型并行技术
与数据并行不同,模型并行将模型的不同层分配到不同的GPU上,真正实现了显存的扩展使用。可以考虑:
- 手动实现模型层拆分
- 使用DeepSpeed等框架的模型并行功能
- 采用Tensor Parallelism技术
2. 利用vLLM等优化推理框架
vLLM是一个专为大模型推理优化的框架,具有以下优势:
- 支持多GPU的显存共享
- 实现了高效的内存管理
- 提供PagedAttention等优化技术
3. 调整生成参数
在无法改变硬件配置的情况下,可以尝试:
- 降低max_length参数值
- 使用更小的batch size
- 尝试不同的精度模式(如FP16)
实践建议
对于GLM-4V-9B这类视觉语言模型,建议采用以下部署策略:
- 优先考虑使用vLLM等优化框架进行多卡部署
- 如果必须使用原生PyTorch,考虑实现模型并行而非数据并行
- 对于资源受限的环境,可以尝试量化技术减少模型显存占用
- 合理设置生成参数,平衡输出质量和显存使用
总结
处理大型视觉语言模型的显存问题需要深入理解并行计算原理。DataParallel并不适合解决显存不足的问题,而应该考虑模型并行或专用推理框架。对于GLM-4这类模型,vLLM多卡部署是一个值得尝试的高效解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881