Stellar-core 检查点验证机制优化方案
2025-06-25 19:27:26作者:瞿蔚英Wynne
背景介绍
Stellar-core 是一个开源的去中心化支付网络核心实现,它采用区块链技术来记录和验证交易。在 Stellar 网络中,检查点(checkpoint)机制是确保网络状态一致性的重要组成部分。检查点包含了特定区块高度的状态哈希值,用于验证区块链数据的完整性和正确性。
当前问题分析
目前 Stellar-core 中的 verify-checkpoints
命令存在一个明显的效率问题:每次执行验证时都必须从创世区块(genesis)开始,一直验证到最新的网络账本或指定的历史账本高度。这种全量验证方式带来了两个主要问题:
- 时间成本高:从创世区块开始验证整个区块链需要数小时的时间
- 资源浪费:大多数情况下,运维人员只需要验证新增的区块,而不需要重复验证已经确认过的历史数据
技术解决方案
为了解决这个问题,我们提出了一种增量验证机制,主要包含以下改进点:
1. 信任锚点机制
系统将引入信任锚点(trust anchor)的概念,即已经验证过的检查点可以作为后续验证的起点。这样就不需要每次都从创世区块开始验证。
2. 状态持久化
验证过程中产生的中间状态将被持久化存储,包括:
- 最后验证成功的区块高度
- 对应的哈希值
- 验证过程中生成的默克尔树证明
3. 增量验证流程
新的验证流程将分为以下几个步骤:
- 读取上次验证的最后高度和哈希
- 从该高度开始继续验证后续区块
- 只对新增加的区块进行哈希计算和验证
- 更新信任锚点到最新验证成功的高度
4. 容错处理
考虑到可能的异常情况,系统需要具备:
- 验证中断后的恢复能力
- 对不一致数据的检测和报告机制
- 手动重置验证状态的能力
实现细节
在具体实现上,我们需要:
- 修改
verify-checkpoints
命令的参数,增加--resume-from
选项 - 在本地存储中维护验证状态信息
- 优化哈希计算过程,支持从指定高度开始
- 确保与现有检查点文件的兼容性
性能优化预期
通过这种增量验证机制,预计可以带来以下改进:
- 日常维护时间从数小时缩短到几分钟
- 降低CPU和内存资源消耗
- 提高系统响应速度
- 减少网络带宽使用
安全考虑
虽然采用增量验证提高了效率,但我们仍需确保:
- 信任锚点的完整性不能被破坏
- 状态持久化存储需要加密保护
- 提供全量验证模式作为备选方案
- 完善的日志记录和审计功能
总结
Stellar-core 的检查点验证机制优化将显著提升网络运维效率,同时保持原有的安全保证。这一改进特别适合需要频繁更新信任哈希的生产环境,使系统维护更加轻量化和可持续。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401