rspec-fire 技术文档
1. 安装指南
rspec-fire 是一个用于 RSpec 的扩展库,旨在帮助开发者在测试中验证模拟对象的方法是否存在。虽然该库已被 RSpec 3 的 verifying doubles 功能取代,但为了历史记录,我们仍然保留了这个项目。
安装步骤
-
确保你已经安装了 Ruby 和 Bundler。
-
在终端中运行以下命令来安装
rspec-fire:gem install rspec-fire -
在你的
spec_helper.rb文件中添加以下配置:require 'rspec/fire' RSpec.configure do |config| config.include(RSpec::Fire) end
2. 项目的使用说明
rspec-fire 的主要功能是验证测试中模拟对象的方法是否存在。它允许你在隔离的环境中运行测试,同时在全应用上下文中运行时验证方法的有效性。
基本用法
假设你有一个 User 类,它依赖于 EmailNotifier 类来发送通知。你可以使用 rspec-fire 来验证 EmailNotifier 的方法是否存在。
class User < Struct.new(:notifier)
def suspend!
notifier.notify("suspended as")
end
end
describe User, '#suspend!' do
it 'sends a notification' do
notifier = instance_double("EmailNotifier")
notifier.should_receive(:notify).with("suspended as")
user = User.new(notifier)
user.suspend!
end
end
运行测试
你可以选择在隔离环境中运行测试,或者在全应用上下文中运行测试:
# 隔离环境中运行,始终通过
rspec spec/user_spec.rb
# 全应用上下文中运行,如果 EmailNotifier#notify 方法未定义则会失败
rspec -Ilib -remail_notifier.rb spec/user_spec.rb
3. 项目 API 使用文档
instance_double
instance_double 用于创建一个模拟对象,并验证该对象的方法是否存在。
notifier = instance_double("EmailNotifier")
class_double
class_double 用于模拟类常量,并验证该类的方法是否存在。
notifier = class_double("EmailNotifier").as_stubbed_const
transfer_nested_constants
当使用 class_double 模拟一个类或模块时,你可以使用 transfer_nested_constants 选项来传递嵌套的常量。
class_double("MyCoolGem").as_stubbed_const(:transfer_nested_constants => true)
verify_constant_names
你可以配置 rspec-fire 来验证常量名称是否正确。
RSpec::Fire.configure do |config|
config.verify_constant_names = true
end
4. 项目安装方式
通过 Gemfile 安装
如果你使用 Bundler 管理依赖,可以在 Gemfile 中添加以下内容:
gem 'rspec-fire'
然后运行 bundle install 来安装依赖。
手动安装
你也可以通过以下命令手动安装 rspec-fire:
gem install rspec-fire
开发环境设置
如果你想在本地开发 rspec-fire,可以按照以下步骤进行:
-
克隆项目仓库:
git clone https://github.com/xaviershay/rspec-fire.git -
安装依赖:
bundle install -
运行测试:
bundle exec rake spec
总结
rspec-fire 是一个用于验证模拟对象方法是否存在的 RSpec 扩展库。虽然它已被 RSpec 3 的 verifying doubles 功能取代,但在某些情况下仍然可以使用。通过本文档,你应该能够顺利安装、配置和使用 rspec-fire 来增强你的测试代码。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00