EasyEdit项目中的LoRA多GPU支持问题解析与解决方案
背景介绍
EasyEdit是一个基于大型语言模型(LLM)的知识编辑框架,它支持多种编辑方法,包括LoRA(Low-Rank Adaptation)等参数高效微调技术。在实际应用中,用户经常遇到使用LoRA进行模型编辑时的显存不足问题,特别是在处理像LLaMA这样的大型模型时。
问题现象
当用户尝试在EasyEdit中使用LoRA方法编辑LLaMA模型时,会遇到显存不足的问题。为了解决这个问题,用户通常会尝试启用模型并行(model_parallel)功能,将模型分布在多个GPU上运行。然而,这又会导致新的错误:
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!
这个错误表明,在模型并行环境下,张量被错误地分配到了不同的GPU设备上,导致计算无法正常进行。
技术分析
根本原因
-
PEFT与Accelerate的兼容性问题:参数高效微调库(PEFT)和加速库(Accelerate)在多GPU环境下存在兼容性问题,特别是在处理LoRA层时。
-
AdaLora实现问题:对于AdaLora这种自适应LoRA变体,其正则化损失计算部分的实现没有正确处理多设备情况,导致张量被错误地分配到不同设备。
-
设备一致性检查:PyTorch严格要求参与运算的所有张量必须位于同一设备上,而当前实现违反了这一原则。
解决方案
临时解决方案
对于AdaLora实现,可以通过修改PEFT库中的相关代码来解决设备不一致问题:
-
首先需要将PEFT库升级到最新版本(0.7.1)
-
修改AdaLora的正则化损失计算部分,确保所有计算都在同一设备上进行:
device = next(self.model.parameters()).device
regu_loss = 0
num_param = 0
for n, p in self.model.named_parameters():
if ("lora_A" in n or "lora_B" in n) and self.trainable_adapter_name in n:
para_cov = p @ p.T if "lora_A" in n else p.T @ p
I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov))
I.requires_grad = False
num_param += 1
regu_loss += torch.norm((para_cov - I).to(device), p="fro")
关键修改点:
- 显式获取模型参数所在的设备
- 确保单位矩阵I与para_cov在同一设备上
- 将计算结果显式转移到正确设备
EasyEdit的改进
EasyEdit项目已经进行了以下改进来更好地支持多GPU环境:
- 增加了LoRA类型选择功能,允许用户指定使用哪种LoRA变体
- 优化了多GPU环境下的参数处理逻辑
- 计划未来支持DeepSpeed集成,以提供更高效的多GPU训练支持
最佳实践建议
- 版本管理:确保使用PEFT 0.7.1或更高版本
- 配置选择:根据需求选择合适的LoRA类型
- 设备检查:在自定义操作中显式处理设备一致性
- 显存监控:即使使用多GPU,也应注意监控各卡的显存使用情况
未来展望
EasyEdit团队正在积极开发对DeepSpeed的支持,这将为多GPU环境下的模型编辑提供更高效的解决方案。同时,团队也在持续优化现有方法的设备兼容性,以提供更稳定的多GPU训练体验。
对于需要处理大型模型的用户,建议关注项目更新,及时获取最新的多GPU支持功能。同时,在自定义编辑方法时,应特别注意跨设备操作的兼容性问题,确保所有张量运算都在同一设备上进行。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









