Great Expectations 中自定义SQL期望的持久化问题解析
问题背景
在使用Great Expectations(版本1.2.4)进行数据质量验证时,开发人员发现了一个关于自定义SQL期望持久化的问题。当用户在Databricks环境中创建基于SQL的自定义期望并将其添加到期望套件(Expectation Suite)后,如果Python会话结束(如Databricks集群因不活动而关闭),重新初始化数据上下文(Data Context)后,之前创建的自定义期望会丢失。
问题现象
开发人员按照以下步骤操作:
- 创建数据源、数据资产和批处理定义
- 定义一个继承自UnexpectedRowsExpectation的自定义期望类ExpectValidLineItemSum
- 将该期望添加到期望套件中
- 结束当前Python会话(通过重启Databricks集群)
- 重新初始化数据上下文并尝试获取之前保存的期望套件
此时系统抛出ExpectationNotFoundError异常,提示"expect_valid_line_item_sum not found",表明之前创建的自定义期望未能正确持久化。
技术原理分析
Great Expectations的期望套件实际上是存储在JSON文件中的,理论上应该能够持久保存自定义期望。但问题出在以下几个方面:
-
自定义期望类的加载机制:Great Expectations在运行时需要能够识别自定义期望类。当Python会话结束时,所有内存中的类定义都会丢失。重新启动会话后,如果没有重新定义相同的自定义期望类,系统就无法识别之前保存的期望配置。
-
期望类的序列化/反序列化:虽然期望配置被保存为JSON,但Great Expectations在加载时需要能够找到对应的Python类实现。如果类定义不存在,就无法正确重建期望对象。
-
UnexpectedRowsExpectation的特殊性:这个期望类型依赖于SQL查询,其验证逻辑与常规期望有所不同,需要特别注意其持久化方式。
解决方案
针对这个问题,Great Expectations社区在1.3.0版本中已经解决了这个问题。对于使用1.2.4版本的用户,可以采用以下临时解决方案:
-
在每次会话开始时重新定义自定义期望类:确保在任何使用期望套件的Python会话中,都首先定义相同的自定义期望类。
-
使用UnexpectedRowsExpectation直接创建期望:作为替代方案,可以直接使用UnexpectedRowsExpectation而不进行子类化,这样可以避免类定义丢失的问题。
-
升级到1.3.0或更高版本:新版本已经修复了这个问题,提供了更稳定的自定义期望持久化机制。
最佳实践建议
-
自定义期望的管理:对于重要的自定义期望,建议将其定义保存在单独的Python模块中,并在使用前显式导入。
-
版本控制:将自定义期望的定义文件纳入版本控制系统,确保团队成员使用一致的实现。
-
文档记录:详细记录每个自定义期望的用途、参数和SQL查询逻辑,便于后续维护。
-
测试验证:在部署前验证自定义期望在不同会话间的持久化效果,确保其行为符合预期。
总结
Great Expectations作为强大的数据质量验证工具,其自定义期望功能提供了极大的灵活性。理解其持久化机制对于构建可靠的数据质量监控系统至关重要。通过遵循上述解决方案和最佳实践,开发人员可以确保自定义SQL期望在不同会话间正确持久化,从而构建更加健壮的数据验证流程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00