Great Expectations 中自定义SQL期望的持久化问题解析
问题背景
在使用Great Expectations(版本1.2.4)进行数据质量验证时,开发人员发现了一个关于自定义SQL期望持久化的问题。当用户在Databricks环境中创建基于SQL的自定义期望并将其添加到期望套件(Expectation Suite)后,如果Python会话结束(如Databricks集群因不活动而关闭),重新初始化数据上下文(Data Context)后,之前创建的自定义期望会丢失。
问题现象
开发人员按照以下步骤操作:
- 创建数据源、数据资产和批处理定义
- 定义一个继承自UnexpectedRowsExpectation的自定义期望类ExpectValidLineItemSum
- 将该期望添加到期望套件中
- 结束当前Python会话(通过重启Databricks集群)
- 重新初始化数据上下文并尝试获取之前保存的期望套件
此时系统抛出ExpectationNotFoundError异常,提示"expect_valid_line_item_sum not found",表明之前创建的自定义期望未能正确持久化。
技术原理分析
Great Expectations的期望套件实际上是存储在JSON文件中的,理论上应该能够持久保存自定义期望。但问题出在以下几个方面:
-
自定义期望类的加载机制:Great Expectations在运行时需要能够识别自定义期望类。当Python会话结束时,所有内存中的类定义都会丢失。重新启动会话后,如果没有重新定义相同的自定义期望类,系统就无法识别之前保存的期望配置。
-
期望类的序列化/反序列化:虽然期望配置被保存为JSON,但Great Expectations在加载时需要能够找到对应的Python类实现。如果类定义不存在,就无法正确重建期望对象。
-
UnexpectedRowsExpectation的特殊性:这个期望类型依赖于SQL查询,其验证逻辑与常规期望有所不同,需要特别注意其持久化方式。
解决方案
针对这个问题,Great Expectations社区在1.3.0版本中已经解决了这个问题。对于使用1.2.4版本的用户,可以采用以下临时解决方案:
-
在每次会话开始时重新定义自定义期望类:确保在任何使用期望套件的Python会话中,都首先定义相同的自定义期望类。
-
使用UnexpectedRowsExpectation直接创建期望:作为替代方案,可以直接使用UnexpectedRowsExpectation而不进行子类化,这样可以避免类定义丢失的问题。
-
升级到1.3.0或更高版本:新版本已经修复了这个问题,提供了更稳定的自定义期望持久化机制。
最佳实践建议
-
自定义期望的管理:对于重要的自定义期望,建议将其定义保存在单独的Python模块中,并在使用前显式导入。
-
版本控制:将自定义期望的定义文件纳入版本控制系统,确保团队成员使用一致的实现。
-
文档记录:详细记录每个自定义期望的用途、参数和SQL查询逻辑,便于后续维护。
-
测试验证:在部署前验证自定义期望在不同会话间的持久化效果,确保其行为符合预期。
总结
Great Expectations作为强大的数据质量验证工具,其自定义期望功能提供了极大的灵活性。理解其持久化机制对于构建可靠的数据质量监控系统至关重要。通过遵循上述解决方案和最佳实践,开发人员可以确保自定义SQL期望在不同会话间正确持久化,从而构建更加健壮的数据验证流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00