首页
/ OpenBMB/OmniLMM项目中MiniCPM-V-LLaMA3预训练稳定性问题分析

OpenBMB/OmniLMM项目中MiniCPM-V-LLaMA3预训练稳定性问题分析

2025-05-11 18:40:42作者:范靓好Udolf

在大型视觉语言模型开发过程中,预训练阶段的稳定性是影响模型最终性能的关键因素。近期OpenBMB/OmniLMM项目组在MiniCPM-V-LLaMA3模型的预训练过程中遇到了一个典型的技术挑战——训练过程中出现NaN(非数值)问题,特别是在感知器重采样器(perceiver resampler)模块附近。

问题现象

开发团队在尝试不同超参数组合时发现:

  • 学习率范围从1e-3到1e-5
  • 批量大小从128到1024 无论怎样调整这些关键参数,模型在训练过程中都会在感知器重采样器模块产生NaN值。这种现象直接导致训练过程无法正常进行,严重影响模型开发进度。

技术背景

感知器重采样器是多模态模型中的关键组件,负责将高维视觉特征压缩为固定长度的表示。当这个模块出现数值不稳定时,通常表明:

  1. 梯度爆炸问题
  2. 数值计算溢出
  3. 模型架构设计存在潜在缺陷

解决方案

项目组经过深入排查后,通过以下方式解决了该问题:

  1. 更新了模型核心代码架构
  2. 优化了训练流程实现
  3. 可能引入了更稳定的数值计算方法

对开发者的建议

对于遇到类似问题的开发者,建议:

  1. 确保使用最新版本的代码库
  2. 在训练初期密切监控各模块的输出范围
  3. 考虑使用梯度裁剪等技术
  4. 可以尝试逐步增加批量大小而非直接使用较大值

这个问题在多模态模型开发中具有典型性,反映了视觉-语言联合训练中的常见挑战。通过解决这类问题,可以提升模型的训练稳定性,为后续的微调和应用打下坚实基础。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
509