Azure Kubernetes Metrics Adapter:解锁Kubernetes自动伸缩的新维度
项目介绍
Azure Kubernetes Metrics Adapter 是一个专为 Kubernetes 设计的开源项目,它实现了 Kubernetes 的 Custom Metrics API 和 External Metrics API。通过这个适配器,用户可以在 Azure Kubernetes Service (AKS) 上运行的应用程序部署中,利用 Azure 服务(如 Service Bus 队列)和 Application Insights 中的外部和自定义指标,实现基于 Horizontal Pod Autoscaler (HPA) 的自动伸缩。
尽管该项目目前处于维护模式,并且推荐用户转向 KEDA(Kubernetes Event-driven Autoscaling),但 Azure Kubernetes Metrics Adapter 仍然是一个值得探索的工具,尤其是在你需要集成 Azure 服务与 Kubernetes 自动伸缩功能的场景中。
项目技术分析
Azure Kubernetes Metrics Adapter 的核心技术基于 Kubernetes 的 Custom Metrics API 和 External Metrics API。它通过与 Azure Monitor 和 Application Insights 的集成,提供了从 Azure 资源中提取外部指标和自定义指标的能力。这些指标可以用于驱动 Kubernetes 的 HPA,从而实现基于实际业务需求的自动伸缩。
项目的技术栈包括:
- Kubernetes API: 用于实现 Custom Metrics API 和 External Metrics API。
- Azure Monitor: 用于获取 Azure 资源的外部指标。
- Application Insights: 用于获取应用程序的自定义指标。
- Azure AD Pod Identity: 用于安全地管理 Azure 资源的访问权限。
项目及技术应用场景
Azure Kubernetes Metrics Adapter 适用于以下场景:
- 基于 Azure 服务队列的自动伸缩:例如,当 Service Bus 队列中的消息数量达到一定阈值时,自动增加处理这些消息的 Pod 数量。
- 基于自定义指标的自动伸缩:例如,当应用程序的请求速率(RPS)超过某个值时,自动增加处理请求的 Pod 数量。
- 混合云环境中的自动伸缩:在混合云环境中,结合 Azure 和 Kubernetes 的资源,实现更灵活的自动伸缩策略。
项目特点
- 无缝集成 Azure 服务:通过与 Azure Monitor 和 Application Insights 的集成,用户可以轻松地将 Azure 服务中的指标用于 Kubernetes 的自动伸缩。
- 支持多种指标类型:无论是外部指标(如 Service Bus 队列中的消息数量)还是自定义指标(如 RPS),都可以通过该适配器进行处理。
- 灵活的部署方式:支持通过 Helm Chart 和 Kubernetes YAML 文件进行部署,满足不同用户的需求。
- 安全可靠:通过 Azure AD Pod Identity 实现安全的身份验证和授权,确保只有授权的 Pod 可以访问 Azure 资源。
结语
尽管 Azure Kubernetes Metrics Adapter 已经进入维护模式,但它仍然是一个强大的工具,可以帮助你在 Kubernetes 环境中实现基于 Azure 服务的自动伸缩。如果你正在寻找一种简单而有效的方式来集成 Azure 服务与 Kubernetes 的自动伸缩功能,不妨试试这个项目。同时,也欢迎你探索 KEDA,它提供了更丰富的功能和更广泛的支持。
无论你是 Kubernetes 新手还是经验丰富的开发者,Azure Kubernetes Metrics Adapter 都值得一试。立即开始你的自动伸缩之旅吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00