Psycopg3与PgBouncer集成时的预处理语句配置指南
2025-07-06 17:01:58作者:侯霆垣
在使用Psycopg3连接PostgreSQL数据库时,预处理语句(Prepared Statements)是一个重要的性能优化特性。然而当与PgBouncer这样的连接池工具结合使用时,预处理语句的配置需要特别注意,否则可能会遇到"prepared statement does not exist"等错误。
预处理语句的基本原理
Psycopg3中的预处理语句机制允许将SQL查询预先编译并存储在数据库服务器端,后续执行时只需传递参数即可。这可以显著提高重复执行相同查询模式的性能。Psycopg3通过两个关键参数控制预处理行为:
prepare_threshold:决定一个查询被执行多少次后才转换为预处理语句,默认值为5prepared_max:限制单个连接上最多可缓存的预处理语句数量,默认值为100
与PgBouncer的兼容性问题
当使用PgBouncer时,特别是在事务池模式下,预处理语句可能会遇到问题。这是因为PgBouncer可能会将客户端连接重新分配给不同的后端PostgreSQL连接,而预处理语句是绑定到特定后端连接的。
在PgBouncer 1.22及以上版本中,如果客户端使用libpq 17或更高版本,可以通过新的DEALLOCATE ALL协议解决这个问题。但对于使用旧版libpq的客户端,需要采用替代方案。
解决方案
方案一:完全禁用预处理语句
将prepare_threshold设置为None可以完全禁用预处理语句功能:
# 创建连接时设置
conn = psycopg.connect(dsn, prepare_threshold=None)
# 或者在已有连接上设置
conn.prepare_threshold = None
这种方法简单可靠,但会失去预处理语句带来的性能优势。
方案二:禁用预处理语句的自动释放
对于PgBouncer 1.22+但无法使用libpq 17的环境,可以将prepared_max设置为None来禁止Psycopg自动释放预处理语句:
# 创建连接后设置
conn.prepared_max = None
这种方法允许继续使用预处理语句,但需要注意:
- 预处理语句会持续累积,可能占用较多服务器内存
- 需要确保应用程序不会无限制地创建新的预处理语句
在SQLAlchemy中的配置
如果通过SQLAlchemy使用Psycopg3,可以通过事件监听器设置这些参数:
from sqlalchemy import event
from sqlalchemy import create_engine
engine = create_engine("postgresql+psycopg://user:pass@host/db")
@event.listens_for(engine, "connect")
def set_prepare_threshold(dbapi_conn, connection_record):
dbapi_conn.prepare_threshold = None
# 或者
# dbapi_conn.prepared_max = None
最佳实践建议
- 优先考虑升级到支持DEALLOCATE ALL的libpq 17+和PgBouncer 1.22+
- 如果无法升级,根据应用特点选择:
- 对于短查询居多的应用,禁用预处理语句(方案一)
- 对于复杂查询居多的应用,禁用自动释放(方案二)但需监控内存使用
- 在生产环境部署前,务必进行充分的性能测试
通过合理配置这些参数,可以在保证稳定性的同时,尽可能发挥Psycopg3的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
YY0709-2009医用电气设备资源文件介绍:掌握医疗设备安全标准 intel网卡万能驱动介绍:一键解决所有Intel网卡驱动问题 HFSS计算天线相位中心详解文档——优化天线设计的利器 本科毕业论文-带隙基准电路分析与设计:深度解析与实战应用 MATLAB2016b中文显示乱码解决办法:轻松解决MATLAB中文乱码问题 设计师的优选SourceInsight4.0养眼主题:舒适代码编辑新体验 IEEE标准电力系统暂态数据交换通用格式COMTRADE资源文件:项目推荐文章 java-ssm网上购物系统毕业设计程序:高效便捷的网上购物解决方案 高斯投影3度带与6度带转换工具:助您轻松实现坐标转换 深度解析《代码随想录知识星球精华-大厂面试八股文v1.1.pdf》:求职者的面试宝典
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134