Feather 开源项目教程
2024-08-22 06:05:21作者:殷蕙予
项目介绍
Feather 是一个快速、轻量级的二进制文件格式,专门为数据科学领域设计。它由 Wes McKinney(Pandas 的创建者)和 Hadley Wickham 共同开发,旨在解决数据科学家在数据交换过程中遇到的性能瓶颈问题。Feather 支持多种编程语言,包括 Python 和 R,使得数据在不同环境间的传输更加高效。
项目快速启动
安装 Feather
首先,确保你已经安装了 Python 和 R 的环境。然后,你可以通过以下命令安装 Feather:
pip install feather-format
在 R 环境中,你可以使用以下命令安装:
install.packages("feather")
使用示例
Python 示例
import pandas as pd
import feather
# 创建一个示例 DataFrame
data = pd.DataFrame({
'A': range(1, 10001),
'B': [x * 2 for x in range(1, 10001)]
})
# 将 DataFrame 保存为 Feather 文件
feather.write_dataframe(data, 'example.feather')
# 读取 Feather 文件
loaded_data = feather.read_dataframe('example.feather')
print(loaded_data.head())
R 示例
library(feather)
# 创建一个示例数据框
data <- data.frame(
A = 1:10000,
B = 1:10000 * 2
)
# 将数据框保存为 Feather 文件
write_feather(data, "example.feather")
# 读取 Feather 文件
loaded_data <- read_feather("example.feather")
print(head(loaded_data))
应用案例和最佳实践
数据交换
Feather 最常见的应用场景是数据交换。例如,数据科学家可能在 Python 中进行数据预处理,然后将数据传递给 R 进行统计分析。使用 Feather 可以显著提高数据交换的速度和效率。
大数据处理
对于大数据处理,Feather 的高效读写性能使得它在处理大规模数据集时非常有优势。例如,在数据仓库和数据湖中,Feather 可以作为中间格式,加速数据的加载和存储。
典型生态项目
Pandas
Pandas 是 Python 中最流行的数据分析库之一,Feather 与 Pandas 的集成非常紧密。通过 feather-format 库,Pandas 的 DataFrame 可以直接保存为 Feather 格式,从而实现快速的数据读写。
Arrow
Apache Arrow 是一个跨语言的内存数据层,旨在提高大数据的计算性能。Feather 实际上是基于 Arrow 的格式,因此在使用 Feather 时,你也在间接使用 Arrow 的技术。Arrow 提供了更广泛的数据类型支持和更高效的内存管理,是 Feather 的重要基础。
通过以上内容,你可以快速了解并开始使用 Feather 开源项目,享受其带来的高效数据交换和处理体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143