解决macOS上运行ml-depth-pro项目时的Half精度错误
2025-06-13 13:31:35作者:苗圣禹Peter
问题背景
在使用苹果开源的ml-depth-pro项目进行深度估计时,部分macOS用户遇到了一个与数据类型相关的运行时错误。具体表现为当尝试在配备M1/M2芯片或AMD显卡的Mac电脑上运行深度估计模型时,程序会抛出"RuntimeError: 'compute_indices_weights_linear' not implemented for 'Half'"的错误信息。
错误分析
这个错误的核心在于PyTorch在macOS平台上对半精度浮点数(Half precision, float16)的支持不完整。具体来说:
- 项目默认使用torch.half(半精度)来提升推理速度并减少内存占用
- 但在macOS的Metal Performance Shaders(MPS)后端中,某些操作(特别是上采样插值操作)尚未完全支持半精度计算
- 当模型执行到需要双线性上采样的步骤时,系统找不到对应的半精度实现
解决方案
方法一:强制使用单精度浮点数
最直接的解决方案是将模型的计算精度从半精度(float16)改为单精度(float32)。这可以通过修改项目中的run.py文件实现:
- 定位到depth_pro/cli/run.py文件
- 找到run(args)函数中定义精度的部分
- 将torch.half改为torch.float32
这种修改虽然会略微增加内存使用量,但能确保所有操作都能正常执行。
方法二:调整MPS内存分配策略
在macOS上运行大型模型时,还可能需要调整MPS的内存分配策略:
export PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0
或者使用更保守的设置:
export PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.7
这个环境变量控制了MPS后端的内存分配行为,设置为0.0表示不设上限,而0.7表示使用70%的可用内存作为上限。
技术细节
-
精度选择的影响:
- float16:内存占用减半,理论计算速度更快,但数值范围小,容易溢出
- float32:传统单精度,数值稳定,但内存占用和计算量更大
-
MPS后端限制:
- macOS 13.0以下版本对某些上采样操作的支持不完整
- 部分操作在MPS后端会回退到CPU执行,影响性能
-
性能考量:
- 在配备强大GPU的Mac上,使用float32通常不会造成明显性能下降
- 内存充足的设备上,float32是更安全的选择
最佳实践建议
- 对于开发环境,优先使用float32确保稳定性
- 在生产部署时,可以在支持的硬件上尝试float16以获得更好性能
- 定期检查PyTorch的MPS后端更新,苹果正在不断完善对半精度的支持
- 对于大型模型,合理设置PYTORCH_MPS_HIGH_WATERMARK_RATIO以避免内存问题
通过以上调整,用户可以在macOS平台上顺利运行ml-depth-pro项目,获得准确的深度估计结果。随着PyTorch对MPS后端支持的不断完善,未来这些限制有望得到进一步缓解。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19