Retina项目中Grafana部署配置的技术实践指南
2025-06-27 08:15:47作者:农烁颖Land
概述
在Kubernetes网络观测领域,Retina项目提供了强大的网络可观测性能力。本文将详细介绍如何为Retina项目配置Grafana监控仪表板,实现完整的可视化监控解决方案。
部署架构选择
Retina项目监控体系通常包含以下核心组件:
- Retina Agent:负责采集网络指标数据
- Prometheus:作为指标存储和查询引擎
- Grafana:提供可视化仪表板
部署方式主要有两种:
- 一体化部署:使用kube-prometheus-stack Helm chart同时部署Prometheus和Grafana
- 分离部署:单独部署各组件,适合已有监控基础设施的环境
一体化部署方案
对于新建环境,推荐使用kube-prometheus-stack进行一体化部署:
- 创建监控专用命名空间
kubectl create namespace monitoring
- 添加Prometheus社区仓库
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
- 部署完整监控栈
helm install kube-prometheus-stack prometheus-community/kube-prometheus-stack -n monitoring
部署完成后,可通过端口转发访问Grafana:
kubectl port-forward svc/kube-prometheus-stack-grafana 8080:80 -n monitoring
仪表板配置实践
预置仪表板导入
Retina项目推荐使用Kubernetes Networking Clusters仪表板(ID:18814),可通过以下方式自动导入:
- 创建values.yaml配置文件
dashboardProviders:
dashboardproviders.yaml:
apiVersion: 1
providers:
- name: 'default'
orgId: 1
folder: ''
type: file
disableDeletion: false
editable: true
options:
path: /var/lib/grafana/dashboards/default
dashboards:
default:
kubernetes-networking-clusters:
gnetId: 18814
revision: 1
datasource: Prometheus
- 使用配置部署Grafana
helm upgrade --install my-grafana grafana/grafana -n monitoring -f values.yaml
自定义仪表板管理
对于需要自定义的场景,可以采用ConfigMap方式管理仪表板:
- 将仪表板JSON文件转换为ConfigMap
kubectl create configmap my-dashboard --from-file=dashboard.json -n monitoring
- 配置Grafana自动加载
grafana.ini:
paths:
provisioning: /etc/grafana/provisioning
dashboards:
enabled: true
path: /var/lib/grafana/dashboards
sidecar:
dashboards:
enabled: true
label: grafana_dashboard
生产环境建议
- 访问控制:配置Ingress或LoadBalancer暴露服务,并启用认证
- 持久化存储:为Grafana配置PVC保证数据持久性
- 资源配额:根据集群规模调整Grafana资源请求和限制
- 高可用:考虑部署多个Grafana实例实现高可用
常见问题排查
- 仪表板无法显示数据:检查Prometheus数据源配置是否正确
- 仪表板加载失败:验证ConfigMap挂载路径和权限
- 性能问题:调整Grafana的JVM参数和资源限制
通过以上实践,可以为Retina项目构建完整的网络观测可视化平台,有效提升Kubernetes网络环境的可观测性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1