Retina项目中Grafana部署配置的技术实践指南
2025-06-27 13:35:12作者:农烁颖Land
概述
在Kubernetes网络观测领域,Retina项目提供了强大的网络可观测性能力。本文将详细介绍如何为Retina项目配置Grafana监控仪表板,实现完整的可视化监控解决方案。
部署架构选择
Retina项目监控体系通常包含以下核心组件:
- Retina Agent:负责采集网络指标数据
- Prometheus:作为指标存储和查询引擎
- Grafana:提供可视化仪表板
部署方式主要有两种:
- 一体化部署:使用kube-prometheus-stack Helm chart同时部署Prometheus和Grafana
- 分离部署:单独部署各组件,适合已有监控基础设施的环境
一体化部署方案
对于新建环境,推荐使用kube-prometheus-stack进行一体化部署:
- 创建监控专用命名空间
kubectl create namespace monitoring
- 添加Prometheus社区仓库
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
- 部署完整监控栈
helm install kube-prometheus-stack prometheus-community/kube-prometheus-stack -n monitoring
部署完成后,可通过端口转发访问Grafana:
kubectl port-forward svc/kube-prometheus-stack-grafana 8080:80 -n monitoring
仪表板配置实践
预置仪表板导入
Retina项目推荐使用Kubernetes Networking Clusters仪表板(ID:18814),可通过以下方式自动导入:
- 创建values.yaml配置文件
dashboardProviders:
dashboardproviders.yaml:
apiVersion: 1
providers:
- name: 'default'
orgId: 1
folder: ''
type: file
disableDeletion: false
editable: true
options:
path: /var/lib/grafana/dashboards/default
dashboards:
default:
kubernetes-networking-clusters:
gnetId: 18814
revision: 1
datasource: Prometheus
- 使用配置部署Grafana
helm upgrade --install my-grafana grafana/grafana -n monitoring -f values.yaml
自定义仪表板管理
对于需要自定义的场景,可以采用ConfigMap方式管理仪表板:
- 将仪表板JSON文件转换为ConfigMap
kubectl create configmap my-dashboard --from-file=dashboard.json -n monitoring
- 配置Grafana自动加载
grafana.ini:
paths:
provisioning: /etc/grafana/provisioning
dashboards:
enabled: true
path: /var/lib/grafana/dashboards
sidecar:
dashboards:
enabled: true
label: grafana_dashboard
生产环境建议
- 访问控制:配置Ingress或LoadBalancer暴露服务,并启用认证
- 持久化存储:为Grafana配置PVC保证数据持久性
- 资源配额:根据集群规模调整Grafana资源请求和限制
- 高可用:考虑部署多个Grafana实例实现高可用
常见问题排查
- 仪表板无法显示数据:检查Prometheus数据源配置是否正确
- 仪表板加载失败:验证ConfigMap挂载路径和权限
- 性能问题:调整Grafana的JVM参数和资源限制
通过以上实践,可以为Retina项目构建完整的网络观测可视化平台,有效提升Kubernetes网络环境的可观测性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.28 K
暂无简介
Dart
621
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
791
77