Retina项目中Grafana部署配置的技术实践指南
2025-06-27 11:39:42作者:农烁颖Land
概述
在Kubernetes网络观测领域,Retina项目提供了强大的网络可观测性能力。本文将详细介绍如何为Retina项目配置Grafana监控仪表板,实现完整的可视化监控解决方案。
部署架构选择
Retina项目监控体系通常包含以下核心组件:
- Retina Agent:负责采集网络指标数据
- Prometheus:作为指标存储和查询引擎
- Grafana:提供可视化仪表板
部署方式主要有两种:
- 一体化部署:使用kube-prometheus-stack Helm chart同时部署Prometheus和Grafana
- 分离部署:单独部署各组件,适合已有监控基础设施的环境
一体化部署方案
对于新建环境,推荐使用kube-prometheus-stack进行一体化部署:
- 创建监控专用命名空间
kubectl create namespace monitoring
- 添加Prometheus社区仓库
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
- 部署完整监控栈
helm install kube-prometheus-stack prometheus-community/kube-prometheus-stack -n monitoring
部署完成后,可通过端口转发访问Grafana:
kubectl port-forward svc/kube-prometheus-stack-grafana 8080:80 -n monitoring
仪表板配置实践
预置仪表板导入
Retina项目推荐使用Kubernetes Networking Clusters仪表板(ID:18814),可通过以下方式自动导入:
- 创建values.yaml配置文件
dashboardProviders:
dashboardproviders.yaml:
apiVersion: 1
providers:
- name: 'default'
orgId: 1
folder: ''
type: file
disableDeletion: false
editable: true
options:
path: /var/lib/grafana/dashboards/default
dashboards:
default:
kubernetes-networking-clusters:
gnetId: 18814
revision: 1
datasource: Prometheus
- 使用配置部署Grafana
helm upgrade --install my-grafana grafana/grafana -n monitoring -f values.yaml
自定义仪表板管理
对于需要自定义的场景,可以采用ConfigMap方式管理仪表板:
- 将仪表板JSON文件转换为ConfigMap
kubectl create configmap my-dashboard --from-file=dashboard.json -n monitoring
- 配置Grafana自动加载
grafana.ini:
paths:
provisioning: /etc/grafana/provisioning
dashboards:
enabled: true
path: /var/lib/grafana/dashboards
sidecar:
dashboards:
enabled: true
label: grafana_dashboard
生产环境建议
- 访问控制:配置Ingress或LoadBalancer暴露服务,并启用认证
- 持久化存储:为Grafana配置PVC保证数据持久性
- 资源配额:根据集群规模调整Grafana资源请求和限制
- 高可用:考虑部署多个Grafana实例实现高可用
常见问题排查
- 仪表板无法显示数据:检查Prometheus数据源配置是否正确
- 仪表板加载失败:验证ConfigMap挂载路径和权限
- 性能问题:调整Grafana的JVM参数和资源限制
通过以上实践,可以为Retina项目构建完整的网络观测可视化平台,有效提升Kubernetes网络环境的可观测性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
515
3.7 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
874
546
Ascend Extension for PyTorch
Python
317
362
暂无简介
Dart
759
182
React Native鸿蒙化仓库
JavaScript
299
347
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
156
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.31 K
734
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
110
128