ntopng企业版ClickHouse内存限制问题分析与解决方案
2025-06-02 23:49:23作者:魏侃纯Zoe
在FreeBSD 15系统上运行ntopng企业版M v6.3时,用户遇到了ClickHouse数据库导入数据时出现内存限制警告的问题。本文将深入分析该问题的成因,并提供专业的技术解决方案。
问题现象
系统日志中出现如下警告信息:
WARNING Received exception from server (version 24.12.2): Code: 241. DB::Exception: (total) memory limit exceeded...
错误表明ClickHouse在执行数据导入操作时超出了预设的内存限制。具体表现为:
- 当前尝试分配5.74GiB内存
- 系统当前RSS内存使用量为1.13GiB
- 最大允许内存限制为5.73GiB
问题根源分析
该问题主要源于两个技术因素:
-
默认内存限制设置不足:ClickHouse默认配置中,单个查询的内存使用上限设置为5.73GB,当处理大规模流量数据导入时容易触及此限制。
-
数据导入规模较大:从错误信息中的SQL语句可以看出,ntopng正在尝试导入包含大量字段的流量数据(flows表),这些数据通常包含网络流量的详细信息,如源/目的IP、端口、协议类型、数据包统计等60多个字段。
解决方案
针对这一问题,建议通过调整ClickHouse的内存配置参数来解决:
- 编辑ClickHouse的主配置文件:
/etc/clickhouse-server/config.xml
- 增加或修改以下两个关键参数:
<max_memory_usage>10737418240</max_memory_usage>
<max_memory_usage_for_all_queries>21474836480</max_memory_usage_for_all_queries>
参数说明:
max_memory_usage:设置单个查询可使用的最大内存(示例设置为10GB)max_memory_usage_for_all_queries:设置所有查询共用的最大内存上限(示例设置为20GB)
- 根据实际服务器配置调整数值:
- 对于内存较大的服务器,可以适当提高这两个值
- 建议保持
max_memory_usage_for_all_queries至少是max_memory_usage的两倍 - 设置值应小于服务器物理内存,保留足够内存给系统和其他服务使用
实施建议
-
监控调整:修改配置后,应持续监控系统内存使用情况,确保不会因内存设置过高导致系统不稳定。
-
分批处理:对于特别大的数据导入,考虑在应用层面实现分批处理机制,减少单次操作的内存需求。
-
定期维护:定期清理历史数据,保持数据库规模在合理范围内,可以提高查询和导入效率。
总结
通过合理调整ClickHouse的内存配置参数,可以有效解决ntopng企业版在数据导入时遇到的内存限制问题。这一解决方案已在实践中得到验证,能够确保系统稳定处理大规模网络流量数据的存储和分析任务。系统管理员应根据实际硬件配置和工作负载特点,找到最适合自身环境的内存参数设置。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869