深入解析dolphinscheduler-operator:自动化部署与管理的利器
在当今的软件开发与运维领域,自动化部署和管理分布式系统成为了提高效率、降低成本的关键。Apache Dolphinscheduler作为一个强大的分布式作业调度平台,其operator——dolphinscheduler-operator,为Kubernetes环境下的自动化部署和管理提供了便捷的工具。本文将详细介绍如何使用dolphinscheduler-operator完成分布式作业调度系统的部署,以及如何进行有效的管理。
准备工作
在开始使用dolphinscheduler-operator之前,您需要确保您的环境满足以下要求:
- Kubernetes集群:确保您有一个可用的Kubernetes集群,用于部署和运行dolphinscheduler-operator。
- PostgreSQL数据库:dolphinscheduler需要一个数据库来存储作业信息,您可以选择安装PostgreSQL。
- Zookeeper(可选):如果您的作业需要分布式协调服务,可以安装Zookeeper。
安装所需的数据库和中间件后,您需要准备相应的配置文件,包括数据库连接信息和Zookeeper的配置。
模型使用步骤
以下是使用dolphinscheduler-operator进行部署的基本步骤:
1. 创建命名空间
首先,在Kubernetes中创建一个命名空间,用于隔离dolphinscheduler的资源。
kubectl create namespace ds
2. 安装PostgreSQL数据库
如果您的环境中没有可用的数据库,可以使用以下命令创建一个演示数据库。请注意,这仅适用于演示环境,不应在生产环境中使用。
kubectl apply -f config/ds/postgreSQL
接着,您需要连接到PostgreSQL数据库,并执行以下SQL脚本以初始化数据库架构:
-- 从dolphinscheduler的GitHub仓库中获取SQL脚本
-- https://github.com/apache/dolphinscheduler/blob/dev/dolphinscheduler-dao/src/main/resources/sql/dolphinscheduler_postgresql.sql
3. 安装Zookeeper(可选)
如果您的作业需要Zookeeper进行分布式协调,可以按照以下步骤进行安装:
kubectl apply -f config/ds/zookeeper
4. 创建PV和PVC(可选)
根据您的存储需求,创建持久卷(PV)和持久卷声明(PVC),并配置到相应的YAML文件中。
5. 部署dolphinscheduler组件
使用以下命令构建、打包和部署dolphinscheduler-operator:
export IMG=ghcr.io/apache/dolphinscheduler-operator:latest
make build && make manifests && make install && make deploy
部署完成后,可以使用以下命令创建dolphinscheduler的各个组件:
cd config/samples
kubectl apply -f ds_v1alpha1_dsalert.yaml
kubectl apply -f ds_v1alpha1_dsapi.yaml -f ds_v1alpha1_dsmaster.yaml -f ds_v1alpha1_dsworker.yaml
结果分析
部署完成后,您可以使用kubectl命令来查询各个组件的状态,确保它们正常运行。例如:
kubectl get dsworkers.ds.apache.dolphinscheduler.dev -n ds
性能评估指标通常包括作业的执行时间、资源使用率以及系统的稳定性等。您可以根据这些指标来评估dolphinscheduler-operator的性能和效率。
结论
dolphinscheduler-operator为在Kubernetes环境中自动化部署和管理dolphinscheduler提供了一个高效、稳定的解决方案。通过遵循上述步骤,您可以轻松地搭建一个分布式作业调度系统,并确保其稳定运行。随着项目的不断发展和优化,我们期待dolphinscheduler-operator能够带来更多的便利和优势。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00