Minishift 使用教程
1. 项目介绍
Minishift 是一个帮助你在本地运行 OpenShift 的工具,通过在虚拟机(VM)中运行一个单节点的 OpenShift 集群来实现。你可以使用 Minishift 来尝试 OpenShift 或在本地进行日常开发。需要注意的是,Minishift 仅支持 OpenShift 3.x 版本,不支持 OpenShift 4.x 版本。对于 OpenShift 4.x 的本地运行,建议使用 CodeReady Containers。
Minishift 使用 libmachine 来配置虚拟机,并使用 OpenShift Origin 来运行集群。其代码库是从 Minikube 项目中分叉出来的。
2. 项目快速启动
2.1 下载 Minishift 二进制文件
首先,从 Minishift 的 GitHub 仓库下载最新的二进制文件,并查看发布说明。
$ wget -qO- https://github.com/minishift/minishift/releases/download/v1.34.0/minishift-1.34.0-linux-amd64.tgz | tar --extract --gzip --verbose -C ~/bin/
2.2 创建符号链接
为了方便使用,可以为 Minishift 创建一个符号链接。
$ ln --symlink ~/bin/minishift-1.34.0-linux-amd64/minishift ~/bin/minishift
2.3 启动 Minishift
使用 start
参数启动 Minishift。
$ minishift start
启动过程中,Minishift 会检查系统环境并配置虚拟机。
3. 应用案例和最佳实践
3.1 本地开发环境
Minishift 非常适合用于本地开发环境。开发者可以在本地快速启动一个 OpenShift 集群,进行应用的开发和测试。通过 Minishift,开发者可以模拟生产环境,确保应用在部署到生产环境之前能够正常运行。
3.2 学习 OpenShift
对于想要学习 OpenShift 的开发者来说,Minishift 是一个非常好的工具。它提供了一个轻量级的 OpenShift 环境,开发者可以在本地进行各种实验和学习,而无需担心对生产环境造成影响。
4. 典型生态项目
4.1 OpenShift Origin
OpenShift Origin 是 Minishift 的核心组件,用于在虚拟机中运行 OpenShift 集群。OpenShift Origin 提供了丰富的功能,包括容器编排、服务发现、自动扩展等。
4.2 CodeReady Containers
对于需要运行 OpenShift 4.x 的开发者,CodeReady Containers 是一个更好的选择。它提供了与 Minishift 类似的功能,但支持 OpenShift 4.x 版本。
4.3 Minikube
Minikube 是 Minishift 的代码库来源,用于在本地运行 Kubernetes 集群。虽然 Minishift 专注于 OpenShift,但 Minikube 提供了类似的本地 Kubernetes 开发环境。
通过这些生态项目,开发者可以在本地构建完整的容器化开发环境,提高开发效率和应用质量。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









