Minishift 使用教程
1. 项目介绍
Minishift 是一个帮助你在本地运行 OpenShift 的工具,通过在虚拟机(VM)中运行一个单节点的 OpenShift 集群来实现。你可以使用 Minishift 来尝试 OpenShift 或在本地进行日常开发。需要注意的是,Minishift 仅支持 OpenShift 3.x 版本,不支持 OpenShift 4.x 版本。对于 OpenShift 4.x 的本地运行,建议使用 CodeReady Containers。
Minishift 使用 libmachine 来配置虚拟机,并使用 OpenShift Origin 来运行集群。其代码库是从 Minikube 项目中分叉出来的。
2. 项目快速启动
2.1 下载 Minishift 二进制文件
首先,从 Minishift 的 GitHub 仓库下载最新的二进制文件,并查看发布说明。
$ wget -qO- https://github.com/minishift/minishift/releases/download/v1.34.0/minishift-1.34.0-linux-amd64.tgz | tar --extract --gzip --verbose -C ~/bin/
2.2 创建符号链接
为了方便使用,可以为 Minishift 创建一个符号链接。
$ ln --symlink ~/bin/minishift-1.34.0-linux-amd64/minishift ~/bin/minishift
2.3 启动 Minishift
使用 start
参数启动 Minishift。
$ minishift start
启动过程中,Minishift 会检查系统环境并配置虚拟机。
3. 应用案例和最佳实践
3.1 本地开发环境
Minishift 非常适合用于本地开发环境。开发者可以在本地快速启动一个 OpenShift 集群,进行应用的开发和测试。通过 Minishift,开发者可以模拟生产环境,确保应用在部署到生产环境之前能够正常运行。
3.2 学习 OpenShift
对于想要学习 OpenShift 的开发者来说,Minishift 是一个非常好的工具。它提供了一个轻量级的 OpenShift 环境,开发者可以在本地进行各种实验和学习,而无需担心对生产环境造成影响。
4. 典型生态项目
4.1 OpenShift Origin
OpenShift Origin 是 Minishift 的核心组件,用于在虚拟机中运行 OpenShift 集群。OpenShift Origin 提供了丰富的功能,包括容器编排、服务发现、自动扩展等。
4.2 CodeReady Containers
对于需要运行 OpenShift 4.x 的开发者,CodeReady Containers 是一个更好的选择。它提供了与 Minishift 类似的功能,但支持 OpenShift 4.x 版本。
4.3 Minikube
Minikube 是 Minishift 的代码库来源,用于在本地运行 Kubernetes 集群。虽然 Minishift 专注于 OpenShift,但 Minikube 提供了类似的本地 Kubernetes 开发环境。
通过这些生态项目,开发者可以在本地构建完整的容器化开发环境,提高开发效率和应用质量。
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0276community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









