Anthropic SDK Python 中 Batch API 的缓存控制功能解析
2025-07-07 23:24:33作者:尤辰城Agatha
背景介绍
在 Anthropic SDK Python 的最新版本中,开发者遇到了一个关于 Batch API 与缓存控制功能结合使用的技术问题。这个问题涉及到如何在使用批量消息处理时,同时利用 Claude 模型的提示缓存功能来优化性能和降低成本。
问题本质
问题的核心在于 Batch API 最初不支持 cache_control 参数,导致开发者在使用时遇到验证错误。具体表现为系统提示"messages.5.content.0.text.cache_control: Extra inputs are not permitted",即使开发者已经按照文档要求在参数中包含了 betas 字段。
技术解决方案
经过 Anthropic 开发团队的确认,这个问题源于两个关键因素:
-
参数位置错误:
betas参数应当位于 API 调用的顶层,而不是嵌套在请求参数内部。正确的调用方式应该是client.beta.messages.batches.create(betas=[...], requests=[...])。 -
SDK 版本问题:在 v0.36.1 之前的版本中存在一个关于
betas参数处理的 bug,这个 bug 已经在 v0.36.1 版本中修复。
实际应用示例
以下是结合 Batch API 和提示缓存功能的正确使用方式:
import anthropic
client = anthropic.Anthropic(api_key="your-api-key")
response = client.beta.messages.batches.create(
betas=["prompt-caching-2024-07-31", "message-batches-2024-09-24"],
requests=[
{
"custom_id": "unique-id-1",
"params": {
"model": "claude-3-5-sonnet-20240620",
"system": [
{
"type": "text",
"text": "你的系统提示内容",
"cache_control": {"type": "ephemeral"}
}
],
"messages": [
{
"role": "user",
"content": "你的用户消息内容"
}
],
"max_tokens": 4096
}
}
]
)
类型系统说明
值得注意的是,Anthropic SDK 中的类型系统目前存在一些特殊情况:
PromptCachingBetaMessageParam类型与BetaMessageParam类型是相互独立的- 当前的设计中,
client.beta.prompt_caching.messages相关功能是作为一个独立模块实现的 - 未来版本计划将这些功能统一整合,简化开发者的使用体验
最佳实践建议
- 确保使用最新版本的 Anthropic SDK Python(v0.36.1 或更高)
- 将
betas参数放在 API 调用的顶层 - 对于需要缓存的系统提示,正确使用
cache_control参数 - 关注 Anthropic 官方文档的更新,了解类型系统的改进
总结
通过正确配置参数和使用最新版本的 SDK,开发者可以充分利用 Batch API 的批量处理能力和 Claude 模型的提示缓存功能,实现高效、低成本的大规模语言模型应用开发。随着 Anthropic SDK 的持续演进,这些功能的整合将会更加简洁和直观。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111