Anthropic SDK Python 中 Batch API 的缓存控制功能解析
2025-07-07 04:36:52作者:尤辰城Agatha
背景介绍
在 Anthropic SDK Python 的最新版本中,开发者遇到了一个关于 Batch API 与缓存控制功能结合使用的技术问题。这个问题涉及到如何在使用批量消息处理时,同时利用 Claude 模型的提示缓存功能来优化性能和降低成本。
问题本质
问题的核心在于 Batch API 最初不支持 cache_control 参数,导致开发者在使用时遇到验证错误。具体表现为系统提示"messages.5.content.0.text.cache_control: Extra inputs are not permitted",即使开发者已经按照文档要求在参数中包含了 betas 字段。
技术解决方案
经过 Anthropic 开发团队的确认,这个问题源于两个关键因素:
-
参数位置错误:
betas参数应当位于 API 调用的顶层,而不是嵌套在请求参数内部。正确的调用方式应该是client.beta.messages.batches.create(betas=[...], requests=[...])。 -
SDK 版本问题:在 v0.36.1 之前的版本中存在一个关于
betas参数处理的 bug,这个 bug 已经在 v0.36.1 版本中修复。
实际应用示例
以下是结合 Batch API 和提示缓存功能的正确使用方式:
import anthropic
client = anthropic.Anthropic(api_key="your-api-key")
response = client.beta.messages.batches.create(
betas=["prompt-caching-2024-07-31", "message-batches-2024-09-24"],
requests=[
{
"custom_id": "unique-id-1",
"params": {
"model": "claude-3-5-sonnet-20240620",
"system": [
{
"type": "text",
"text": "你的系统提示内容",
"cache_control": {"type": "ephemeral"}
}
],
"messages": [
{
"role": "user",
"content": "你的用户消息内容"
}
],
"max_tokens": 4096
}
}
]
)
类型系统说明
值得注意的是,Anthropic SDK 中的类型系统目前存在一些特殊情况:
PromptCachingBetaMessageParam类型与BetaMessageParam类型是相互独立的- 当前的设计中,
client.beta.prompt_caching.messages相关功能是作为一个独立模块实现的 - 未来版本计划将这些功能统一整合,简化开发者的使用体验
最佳实践建议
- 确保使用最新版本的 Anthropic SDK Python(v0.36.1 或更高)
- 将
betas参数放在 API 调用的顶层 - 对于需要缓存的系统提示,正确使用
cache_control参数 - 关注 Anthropic 官方文档的更新,了解类型系统的改进
总结
通过正确配置参数和使用最新版本的 SDK,开发者可以充分利用 Batch API 的批量处理能力和 Claude 模型的提示缓存功能,实现高效、低成本的大规模语言模型应用开发。随着 Anthropic SDK 的持续演进,这些功能的整合将会更加简洁和直观。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216