【亲测免费】 物理信息神经网络(PINNs)开源项目教程
2026-01-16 10:21:09作者:咎岭娴Homer
项目介绍
物理信息神经网络(Physics-Informed Neural Networks,简称PINNs)是一种结合了深度学习和物理定律的神经网络模型。PINNs通过在训练过程中嵌入物理定律,能够有效地解决由偏微分方程(PDEs)描述的物理问题。该项目由maziarraissi开发,旨在提供一个开源的实现框架,使得研究人员和工程师能够利用PINNs解决各种科学和工程问题。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.x
- PyTorch/TensorFlow v2
克隆项目
首先,克隆项目到本地:
git clone https://github.com/maziarraissi/PINNs.git
cd PINNs
运行示例
项目中包含多个示例,以展示如何使用PINNs解决不同的物理问题。以下是一个简单的示例,展示如何运行一个基本的PINN模型:
import torch
import numpy as np
from models import PINN
# 定义模型
model = PINN(input_dim=2, output_dim=1, hidden_layers=[20, 20])
# 定义训练数据
X_train = np.random.rand(1000, 2)
y_train = np.sin(X_train[:, 0]) * np.cos(X_train[:, 1])
# 转换为Tensor
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32)
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(1000):
optimizer.zero_grad()
y_pred = model(X_train)
loss = torch.mean((y_pred - y_train) ** 2)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print(f'Epoch {epoch}, Loss: {loss.item()}')
应用案例和最佳实践
应用案例
PINNs已被广泛应用于多个领域,包括:
- 流体动力学
- 材料科学
- 生物医学工程
- 气候科学
最佳实践
- 数据预处理:确保输入数据符合物理定律的要求。
- 模型选择:根据具体问题选择合适的神经网络结构。
- 超参数调优:通过交叉验证和网格搜索优化模型性能。
- 结果验证:使用已知的解析解或实验数据验证模型的准确性。
典型生态项目
PyTorch实现
- torchpde:一个基于PyTorch的PINNs实现,提供了丰富的工具和示例。
TensorFlow实现
- tfpde:一个基于TensorFlow的PINNs实现,支持高阶自动微分和分布式训练。
其他资源
- PINNs论文:详细介绍了PINNs的理论基础和应用案例。
- PINNs社区:一个活跃的社区,提供交流和资源共享的平台。
通过以上内容,您可以快速了解并开始使用物理信息神经网络(PINNs)开源项目。希望这些信息对您有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178