MetaGPT中处理OpenAI API返回的CompletionUsage为None的问题
2025-04-30 02:22:36作者:瞿蔚英Wynne
在使用MetaGPT项目与OpenAI API交互时,开发者可能会遇到一个常见的错误:TypeError: openai.types.completion_usage.CompletionUsage() argument after ** must be a mapping, not NoneType。这个问题通常出现在处理API流式响应时,当尝试解析使用情况统计信息(usage)时发生。
问题背景
MetaGPT是一个基于大型语言模型的开源项目,它需要与各种AI服务提供商的API进行交互。在处理OpenAI API的流式响应时,项目会收集每个数据块(chunk)中的消息内容和使用情况统计。使用情况统计(usage)通常包含以下信息:
- prompt_tokens: 提示词消耗的token数量
- completion_tokens: 生成的响应消耗的token数量
- total_tokens: 总token数量
问题分析
当代码尝试将API返回的usage数据转换为CompletionUsage对象时,如果usage为None,就会抛出上述类型错误。这种情况可能由以下原因导致:
- 某些AI服务提供商在流式响应中不实时返回usage信息
- 某些特定情况下API可能确实没有返回usage数据
- 不同服务提供商返回usage数据的位置可能不同(可能在chunk对象中,也可能在choices数组中)
解决方案
正确的处理方式是在尝试转换usage数据前,先检查数据是否存在且不为None。以下是改进后的代码逻辑:
if finish_reason:
# 检查chunk对象中是否有usage属性且不为None
if hasattr(chunk, "usage") and chunk.usage:
usage = CompletionUsage(**chunk.usage)
# 检查choices数组中是否有usage属性且不为None
elif hasattr(chunk.choices[0], "usage") and chunk.choices[0].usage:
usage = CompletionUsage(**chunk.choices[0].usage)
这种防御性编程方式确保了:
- 只有当usage数据确实存在时才会尝试转换
- 兼容不同服务提供商返回usage数据的不同位置
- 避免了None值导致的类型错误
最佳实践建议
在处理API响应时,特别是与多个服务提供商交互时,建议:
- 总是对API返回的数据进行存在性检查
- 考虑不同服务提供商可能的数据结构差异
- 记录或监控缺失usage数据的情况,以便了解服务行为
- 为缺失usage数据的情况提供合理的默认值或处理逻辑
通过这种方式,可以构建更健壮、更兼容不同AI服务的应用程序,提升用户体验和系统稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705