探秘ROMA:多智能体强化学习中的角色涌现框架
2024-06-13 17:45:02作者:宣聪麟
在多智能体系统中,如何高效协作是强化学习领域的一大挑战。ROMA 是一个开源的多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)框架,它引入了新兴角色的概念以促进团队协作和提升性能。该项目基于 PyMARL 和 SMAC 代码库,为研究者和开发者提供了实现多种先进算法的平台。
项目介绍
ROMA 的核心是通过角色涌现机制来优化多智能体间的协作,从而解决传统方法在复杂环境下的效率问题。该框架不仅实现了自身的 ROMA 算法,还包含了 QMIX、COMA、VDN 和 IQL 等其他主流的多智能体强化学习算法。ROMA 提供了一个统一的实验平台,便于比较不同算法的性能,并推动了这一领域的创新。
项目技术分析
ROMA 在多智能体环境中利用角色表示来分解全局价值函数,每个智能体可能扮演不同的角色,从而改善了信息共享和决策效率。这种方法可以应对动态环境的变化,提高了整体策略的学习速度和稳定性。此外,ROMA 还支持自定义地图,让用户能自由地评估算法在各种场景下的表现。
应用场景
ROMA 可广泛应用于需要智能体协同工作的复杂场景,如机器人协作、自动驾驶、游戏AI等。特别的是,它在 StarCraft II 微型战斗(SMAC)环境中展示了出色的表现,这些环境模拟了现实世界中多智能体系统面临的挑战,如资源分配、战术制定和敌我识别等。
项目特点
- 角色涌现:ROMA 引入了一种新颖的角色表示,使得多智能体能够自然地分工合作。
- 全面的算法覆盖:除了自家的 ROMA 算法,还包括 QMIX、COMA 等多种成熟算法,方便比较和研究。
- 可扩展性:ROMA 基于 PyMARL 和 SMAC 构建,易于集成新的算法或定制环境。
- 易用性:提供 Docker 镜像和清晰的安装指南,简化了实验设置过程。
- 可视化回放:支持保存和播放 StarCraft II 游戏回放,直观展示智能体的行为与决策过程。
ROMA 是一个多智能体强化学习的优秀工具箱,无论你是研究者还是开发者,都能从中受益。尝试一下 ROMA,开启你的智能体协作探索之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C087
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
87
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
433
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19