DA-Transformer 的项目扩展与二次开发
2025-06-05 09:36:31作者:薛曦旖Francesca
1. 项目的基础介绍
DA-Transformer 是一个基于非自回归的序列到序列模型,旨在实现并行文本生成。该项目的核心是 Directed Acyclic Transformer (DA-Transformer),它通过预测一个代表所有可能输出的有向无环图(DAG),实现了快速且多样化的文本生成。每个 DAG 中的路径对应一个特定的输出序列,使得模型在非自回归方式下工作,大幅提高了生成速度。
2. 项目的核心功能
- 快速生成:与自回归的 Transformer 相比,DA-Transformer 在推断阶段的速度有显著提升,延迟降低了 7~14 倍,吞吐量增加了约 20 倍。
- 高质量输出:DA-Transformer在各种文本生成任务中的表现与自回归的 Transformer 相当,甚至超过了某些预训练的自动回归模型,如 BART 和 ProphetNet。
- 易于训练:DA-Transformer 可以端到端训练,无需知识蒸馏,使得训练过程简单直接。
3. 项目使用了哪些框架或库?
- Fairseq:项目基于 Fairseq 的代码库构建,Fairseq 是一个用于序列到序列任务的开源 PyTorch 框架。
- PyTorch:使用 PyTorch 作为深度学习框架。
- LightSeq:为了进一步提高训练速度,项目支持 LightSeq,一个优化了非自回归解码器的库。
- CUDA:项目中的部分操作实现了 CUDA 加速,以提高训练速度和降低 GPU 内存使用。
4. 项目的代码目录及介绍
项目的代码目录结构如下:
fs_plugins/
├── criterions
│ └── nat_dag_loss.py # DA-Transformer 损失函数
├── custom_ops # 操作实现和 cuda 核
│ ├── dag_best_alignment.cu
│ ├── logsoftmax_gather.cu
│ ├── dag_loss.cu
│ ├── dag_loss.py
│ └── dag_loss.cpp
├── models
│ ├── glat_decomposed_with_link.py # DA-Transformer 的 PyTorch 实现
│ ├── ls_glat_decomposed_with_link.py # DA-Transformer 的 LightSeq 实现
│ └── ls_* # LightSeq 的其他相关文件
├── tasks
│ ├── translation_dat_dict.py # 定制的字典实现(添加特殊标记)
│ ├── translation_dat_dataset.py # 定制的数据集(预训练中很有用)
│ ├── translation_dat_generator.py # 定制的生成器
│ └── translation_dat.py # 定制的任务
├── optimizer
│ └── ls_adam.py # LightSeq 的 Adam 优化器
└── scripts
├── average_checkpoints.py # 检查点平均技巧
├── convert_fs_to_ls.py # 将 fairseq 检查点转换为 lightseq 检查点
├── convert_ls_to_fs.py # 将 lightseq 检查点转换为 fairseq 检查点
└── extract_model_state.py # 从检查点中提取模型权重
5. 对项目进行扩展或者二次开发的方向
- 模型优化:根据特定的应用场景,优化模型结构,提高生成速度和质量。
- 任务拓展:将模型应用于更多的自然语言处理任务,如问答、摘要、对话生成等。
- 跨语言扩展:将 DA-Transformer 模型应用于不同语言的文本生成任务,提升其在多语言环境下的性能。
- 集成其他模型:将 DA-Transformer 与其他模型集成,如语言模型、知识图谱等,以提升模型的生成能力。
- 用户交互界面:开发一个用户友好的交互界面,使得非专业人士也能轻松使用和定制模型。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660