PyVideoTrans项目中CUDA与cuDNN版本不兼容问题解决方案
2025-05-18 12:42:16作者:凌朦慧Richard
pyvideotrans
Translate the video from one language to another and add dubbing. 将视频从一种语言翻译为另一种语言,并添加配音
问题背景
在使用PyVideoTrans项目进行视频处理时,部分用户可能会遇到程序自动退出并报错"symbol lookup error libcudnn_cnn_infer.so.8: undefined symbol"的问题。这个错误通常与CUDA和cuDNN库的版本不兼容有关,特别是在Ubuntu 20.04系统环境下。
错误现象
用户在运行PyVideoTrans时,无论是否开启CUDA加速功能,程序都会自动退出并显示以下错误信息:
symbol lookup error: ../anaconda3/envs/pyvideotrans/lib/python3.10/site-packages/torch/lib/../../nvidia/cudnn/lib/libcudnn_cnn_infer.so.8: undefined symbol: _Z20traceback_iretf_implPKcRKN5cudnn16InternalStatus_tEb, version libcudnn_ops_infer.so.8
环境分析
从错误报告中可以看到,用户环境配置如下:
- 操作系统:Ubuntu 20.04
- Python版本:3.10
- NVIDIA驱动版本:535.129.03
- CUDA版本:12.2(但nvcc显示11.6)
- cuDNN版本:8.3.2
- 显卡型号:GTX 1660s
问题根源
这个错误的核心原因是CUDA工具包、cuDNN库和PyTorch版本之间的不兼容。具体表现为:
- 系统中安装了多个CUDA版本(nvcc显示11.6,而NVIDIA-SMI显示12.2)
- cuDNN 8.3.2可能不完全兼容CUDA 12.2
- PyTorch版本与CUDA/cuDNN版本不匹配
解决方案
方案一:统一CUDA版本
-
首先确认系统中实际使用的CUDA版本:
nvcc --version和
echo $LD_LIBRARY_PATH查看实际加载的CUDA库路径
-
建议统一使用CUDA 11.x系列,因为PyTorch对其支持更好
方案二:重新安装匹配的PyTorch版本
-
卸载现有PyTorch:
pip uninstall torch torchvision torchaudio -
根据CUDA版本安装对应的PyTorch:
- 对于CUDA 11.x:
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia - 对于CUDA 12.x:
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
- 对于CUDA 11.x:
方案三:安装必要的CUDA相关库
pip install nvidia-cublas-cu11 nvidia-cudnn-cu11
这个命令会安装与CUDA 11兼容的cuBLAS和cuDNN库,可能解决版本不匹配问题。
预防措施
- 在安装PyTorch时,务必选择与系统CUDA版本匹配的版本
- 保持CUDA驱动、工具包和cuDNN版本一致
- 使用虚拟环境隔离不同项目的依赖
- 定期检查并更新NVIDIA驱动
总结
PyVideoTrans项目中出现的这个CUDA/cuDNN兼容性问题,本质上是深度学习框架依赖管理中的常见问题。通过统一版本、重新安装匹配的PyTorch版本或补充安装必要的CUDA库,可以有效解决此类问题。对于深度学习开发者来说,维护一个版本一致的环境是保证项目稳定运行的关键。
pyvideotrans
Translate the video from one language to another and add dubbing. 将视频从一种语言翻译为另一种语言,并添加配音
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137