AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.18版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化和测试的Docker容器镜像,用于简化深度学习工作负载的部署。这些预构建的容器集成了主流深度学习框架及其依赖项,使开发者和数据科学家能够快速开始训练和推理任务,而无需花费大量时间配置环境。
本次发布的v1.18版本主要针对基于Graviton处理器的PyTorch推理场景进行了优化。Graviton是AWS自主研发的基于ARM架构的处理器系列,相比传统x86架构处理器,在性能和成本效益方面具有显著优势。该版本特别适用于在Amazon SageMaker服务上部署PyTorch模型推理工作负载。
核心特性与技术细节
此版本基于PyTorch 2.4.0框架构建,支持Python 3.11运行环境,采用Ubuntu 22.04作为基础操作系统。容器镜像中包含了完整的PyTorch生态系统组件,包括:
-
核心框架组件:
- torch 2.4.0+cpu:PyTorch主框架,针对Graviton处理器进行了优化
- torchvision 0.19.0+cpu:计算机视觉相关模型和转换工具
- torchaudio 2.4.0+cpu:音频处理相关功能
- torchserve 0.12.0:PyTorch模型服务框架
- torch-model-archiver 0.12.0:模型打包工具
-
科学计算与数据处理支持:
- numpy 1.26.4:基础数值计算库
- pandas 2.2.3:数据分析和处理工具
- scipy 1.14.1:科学计算库
- scikit-learn 1.5.2:机器学习算法库
- opencv-python 4.10.0.84:计算机视觉库
-
开发与部署工具:
- awscli 1.35.13:AWS命令行工具
- boto3 1.35.47:AWS Python SDK
- Cython 3.0.11:Python C扩展工具
- ninja 1.11.1.1:构建系统
性能优化与兼容性
该容器镜像针对Graviton处理器架构进行了深度优化,充分利用了ARM64指令集的优势。通过预编译的二进制包和优化的依赖项配置,确保了在Graviton实例上运行PyTorch推理工作负载时能够获得最佳性能。
容器中还包含了必要的系统库,如libgcc和libstdc++的不同版本,确保了与各种依赖项的兼容性。Ubuntu 22.04基础系统提供了稳定的运行环境,同时支持开发者常用的工具如emacs等。
使用场景
这个版本的DLC特别适合以下场景:
- SageMaker模型部署:在Amazon SageMaker服务上部署PyTorch模型推理端点
- 成本敏感型推理:利用Graviton处理器的成本优势运行大规模推理工作负载
- 边缘计算:在基于ARM架构的边缘设备上部署PyTorch模型
- 持续集成/持续部署:作为CI/CD流水线中的标准化测试和部署环境
版本管理与维护
AWS为这个容器镜像提供了多个标签别名,方便用户根据不同的需求选择版本:
- 主版本标签:2.4-cpu-py311
- 精确版本标签:2.4.0-cpu-py311
- SageMaker专用标签:2.4.0-cpu-py311-ubuntu22.04-sagemaker
- 带构建日期的详细版本标签:2.4.0-cpu-py311-ubuntu22.04-sagemaker-v1.18-2025-03-13-21-03-17
这种灵活的版本标签策略既保证了稳定性,又方便用户进行版本控制和回滚操作。
总结
AWS Deep Learning Containers的这次更新为PyTorch用户提供了在Graviton处理器上运行推理工作负载的标准化解决方案。通过预构建的优化容器,开发者可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置和性能调优上。这对于希望降低推理成本同时保持高性能的企业和开发者来说,是一个值得考虑的选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00