AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.18版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化和测试的Docker容器镜像,用于简化深度学习工作负载的部署。这些预构建的容器集成了主流深度学习框架及其依赖项,使开发者和数据科学家能够快速开始训练和推理任务,而无需花费大量时间配置环境。
本次发布的v1.18版本主要针对基于Graviton处理器的PyTorch推理场景进行了优化。Graviton是AWS自主研发的基于ARM架构的处理器系列,相比传统x86架构处理器,在性能和成本效益方面具有显著优势。该版本特别适用于在Amazon SageMaker服务上部署PyTorch模型推理工作负载。
核心特性与技术细节
此版本基于PyTorch 2.4.0框架构建,支持Python 3.11运行环境,采用Ubuntu 22.04作为基础操作系统。容器镜像中包含了完整的PyTorch生态系统组件,包括:
-
核心框架组件:
- torch 2.4.0+cpu:PyTorch主框架,针对Graviton处理器进行了优化
- torchvision 0.19.0+cpu:计算机视觉相关模型和转换工具
- torchaudio 2.4.0+cpu:音频处理相关功能
- torchserve 0.12.0:PyTorch模型服务框架
- torch-model-archiver 0.12.0:模型打包工具
-
科学计算与数据处理支持:
- numpy 1.26.4:基础数值计算库
- pandas 2.2.3:数据分析和处理工具
- scipy 1.14.1:科学计算库
- scikit-learn 1.5.2:机器学习算法库
- opencv-python 4.10.0.84:计算机视觉库
-
开发与部署工具:
- awscli 1.35.13:AWS命令行工具
- boto3 1.35.47:AWS Python SDK
- Cython 3.0.11:Python C扩展工具
- ninja 1.11.1.1:构建系统
性能优化与兼容性
该容器镜像针对Graviton处理器架构进行了深度优化,充分利用了ARM64指令集的优势。通过预编译的二进制包和优化的依赖项配置,确保了在Graviton实例上运行PyTorch推理工作负载时能够获得最佳性能。
容器中还包含了必要的系统库,如libgcc和libstdc++的不同版本,确保了与各种依赖项的兼容性。Ubuntu 22.04基础系统提供了稳定的运行环境,同时支持开发者常用的工具如emacs等。
使用场景
这个版本的DLC特别适合以下场景:
- SageMaker模型部署:在Amazon SageMaker服务上部署PyTorch模型推理端点
- 成本敏感型推理:利用Graviton处理器的成本优势运行大规模推理工作负载
- 边缘计算:在基于ARM架构的边缘设备上部署PyTorch模型
- 持续集成/持续部署:作为CI/CD流水线中的标准化测试和部署环境
版本管理与维护
AWS为这个容器镜像提供了多个标签别名,方便用户根据不同的需求选择版本:
- 主版本标签:2.4-cpu-py311
- 精确版本标签:2.4.0-cpu-py311
- SageMaker专用标签:2.4.0-cpu-py311-ubuntu22.04-sagemaker
- 带构建日期的详细版本标签:2.4.0-cpu-py311-ubuntu22.04-sagemaker-v1.18-2025-03-13-21-03-17
这种灵活的版本标签策略既保证了稳定性,又方便用户进行版本控制和回滚操作。
总结
AWS Deep Learning Containers的这次更新为PyTorch用户提供了在Graviton处理器上运行推理工作负载的标准化解决方案。通过预构建的优化容器,开发者可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置和性能调优上。这对于希望降低推理成本同时保持高性能的企业和开发者来说,是一个值得考虑的选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00