Axolotl项目训练过程中的显存溢出问题分析与解决方案
2025-05-25 23:36:53作者:虞亚竹Luna
在Axolotl项目中使用Llama 3B模型进行训练时,用户遇到了一个奇怪的显存溢出(OOM)问题。这个问题表现为即使在使用8块80GB显存的GPU和DeepSpeed Zero3优化的情况下,模型在2048或4096序列长度时仍然会出现显存不足的情况。
问题现象
用户报告的主要症状包括:
- 实际参数在每个GPU上占用很小,但缓存却异常膨胀到70GB+
- 即使使用梯度检查点(gradient checkpointing)技术,问题依然存在
- 类似的问题也出现在Deepseek v2 Lite模型上,2048序列长度下显存需求膨胀到800GB+
根本原因分析
经过技术团队调查,发现这个问题与几个关键因素有关:
-
梯度检查点配置缺失:初始配置中缺少梯度检查点设置,这是导致显存使用过高的主要原因之一。
-
DeepSpeed优化配置:虽然使用了Zero3优化,但某些特定模型架构可能需要额外的优化配置。
-
模型架构特性:不同模型(如Llama、Qwen、Mistral等)在相同配置下表现出不同的显存占用特性,这与它们的内部实现有关。
解决方案
技术团队提出了以下解决方案:
- 启用梯度检查点:
gradient_checkpointing: true
这一简单配置可以显著降低显存使用。
- 使用Liger优化: Liger是一种高效的训练优化技术,可以大幅降低显存占用。测试表明:
- 在8GPU环境下,Llama 3B模型在4k上下文长度和微批次大小为4的情况下,显存占用可降至10GB/GPU以下
- Deepseek v2模型在Liger优化下显存占用可降至7GB/GPU以下
- 调整批次参数:
- 适当降低微批次大小(micro_batch_size)
- 合理设置梯度累积步数(gradient_accumulation_steps)
最佳实践建议
- 对于Llama系列模型:
- 确保启用梯度检查点
- 考虑使用Liger优化
- 初始配置建议:序列长度4096,微批次大小1-4
- 对于其他模型:
- 不同模型需要不同的优化策略
- Qwen等模型可能需要更保守的批次设置
- 通用建议:
- 监控每个GPU的显存使用情况
- 逐步增加批次大小和序列长度进行测试
- 关注训练日志中的警告信息
总结
Axolotl项目中的显存优化是一个需要综合考虑模型架构、训练配置和优化技术的复杂问题。通过合理配置梯度检查点、采用Liger等先进优化技术,以及细致的参数调优,可以显著提高大模型训练的显存效率,使在有限硬件资源下训练更大模型成为可能。
对于遇到类似问题的用户,建议从基础配置开始,逐步增加复杂度,并密切监控资源使用情况,以找到最适合自己硬件和模型的最佳配置。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
183
13
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.86 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70