Axolotl项目训练过程中的显存溢出问题分析与解决方案
2025-05-25 22:34:41作者:虞亚竹Luna
在Axolotl项目中使用Llama 3B模型进行训练时,用户遇到了一个奇怪的显存溢出(OOM)问题。这个问题表现为即使在使用8块80GB显存的GPU和DeepSpeed Zero3优化的情况下,模型在2048或4096序列长度时仍然会出现显存不足的情况。
问题现象
用户报告的主要症状包括:
- 实际参数在每个GPU上占用很小,但缓存却异常膨胀到70GB+
- 即使使用梯度检查点(gradient checkpointing)技术,问题依然存在
- 类似的问题也出现在Deepseek v2 Lite模型上,2048序列长度下显存需求膨胀到800GB+
根本原因分析
经过技术团队调查,发现这个问题与几个关键因素有关:
-
梯度检查点配置缺失:初始配置中缺少梯度检查点设置,这是导致显存使用过高的主要原因之一。
-
DeepSpeed优化配置:虽然使用了Zero3优化,但某些特定模型架构可能需要额外的优化配置。
-
模型架构特性:不同模型(如Llama、Qwen、Mistral等)在相同配置下表现出不同的显存占用特性,这与它们的内部实现有关。
解决方案
技术团队提出了以下解决方案:
- 启用梯度检查点:
gradient_checkpointing: true
这一简单配置可以显著降低显存使用。
- 使用Liger优化: Liger是一种高效的训练优化技术,可以大幅降低显存占用。测试表明:
- 在8GPU环境下,Llama 3B模型在4k上下文长度和微批次大小为4的情况下,显存占用可降至10GB/GPU以下
- Deepseek v2模型在Liger优化下显存占用可降至7GB/GPU以下
- 调整批次参数:
- 适当降低微批次大小(micro_batch_size)
- 合理设置梯度累积步数(gradient_accumulation_steps)
最佳实践建议
- 对于Llama系列模型:
- 确保启用梯度检查点
- 考虑使用Liger优化
- 初始配置建议:序列长度4096,微批次大小1-4
- 对于其他模型:
- 不同模型需要不同的优化策略
- Qwen等模型可能需要更保守的批次设置
- 通用建议:
- 监控每个GPU的显存使用情况
- 逐步增加批次大小和序列长度进行测试
- 关注训练日志中的警告信息
总结
Axolotl项目中的显存优化是一个需要综合考虑模型架构、训练配置和优化技术的复杂问题。通过合理配置梯度检查点、采用Liger等先进优化技术,以及细致的参数调优,可以显著提高大模型训练的显存效率,使在有限硬件资源下训练更大模型成为可能。
对于遇到类似问题的用户,建议从基础配置开始,逐步增加复杂度,并密切监控资源使用情况,以找到最适合自己硬件和模型的最佳配置。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248