淘宝推荐系统中的多场景近线召回技术解析
2025-06-25 07:28:40作者:邵娇湘
淘宝作为国内领先的电商平台,其推荐系统一直处于行业前沿。近期淘宝推荐团队提出了一种"简单又高效"的多场景近线召回新范式,为推荐系统的实时性和个性化带来了显著提升。
近线召回技术概述
近线召回(Nearline Recall)是介于离线批处理和在线实时处理之间的一种召回策略。它能够在分钟级甚至秒级更新用户兴趣表示,同时避免了纯在线系统的高计算开销。淘宝推荐系统通过近线召回技术,有效平衡了推荐的新鲜度和系统性能。
多场景统一建模
淘宝推荐面临的一个核心挑战是如何在不同场景(如首页推荐、购物车推荐、搜索推荐等)中实现统一而个性化的召回。传统方法通常为每个场景单独建模,导致维护成本高且难以共享用户兴趣信息。
新范式采用多场景统一建模框架,通过以下关键技术实现:
- 场景感知的用户兴趣编码器
- 跨场景特征共享机制
- 场景特定的注意力权重
简单高效的系统设计
淘宝团队特别强调"简单"这一设计理念,主要体现在:
- 轻量级模型架构:采用双塔结构,用户塔和物品塔分离计算
- 高效特征工程:统一特征处理流水线,避免重复计算
- 增量更新机制:仅对变化部分进行更新,减少计算开销
实时性与效果平衡
近线召回系统在实时性和效果之间找到了良好的平衡点:
- 分钟级更新:用户行为能在1-5分钟内反映到推荐结果中
- 兴趣衰减机制:根据时间衰减因子调整历史行为权重
- 多样性保障:通过多兴趣通道挖掘用户不同方面的偏好
业务价值与效果
在实际应用中,这种多场景近线召回范式带来了显著的业务提升:
- 点击率提升:相比传统方法提升15%以上
- 转化率提高:跨场景一致性带来更精准的用户意图理解
- 系统负载降低:统一架构减少了30%的计算资源消耗
未来发展方向
淘宝推荐团队指出,近线召回技术仍有优化空间:
- 更细粒度的实时性控制
- 跨场景迁移学习的深入应用
- 与生成式AI技术的结合
这种"简单又高效"的技术理念不仅适用于电商推荐,对内容推荐、社交推荐等场景也具有重要参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
235
2.33 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
79

暂无简介
Dart
536
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
63

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
650