深入理解async-book中的任务唤醒机制(Waker)
2025-06-20 12:37:24作者:伍霜盼Ellen
前言
在异步编程中,任务(task)的执行往往不是一蹴而就的。当任务无法立即完成时,如何高效地通知执行器(executor)再次调度这个任务就变得至关重要。本文将深入探讨async-book项目中关于任务唤醒机制(Waker)的实现原理,并通过构建一个定时器未来(timer future)的实例来展示其应用。
Waker的基本概念
Waker是Rust异步编程中的核心组件之一,它充当了任务与执行器之间的桥梁。当未来(future)被轮询(poll)时,如果它无法立即完成,就会获得一个Waker对象。这个Waker对象允许未来在准备好继续执行时通知执行器。
Waker的关键特性包括:
wake()方法:用于通知执行器关联的任务已准备好继续执行clone()实现:允许Waker被复制和存储- 轻量级:设计上非常高效,不会成为性能瓶颈
定时器未来的实现
让我们通过构建一个定时器未来来理解Waker的实际应用。这个定时器将在指定时间后完成,期间会利用Waker机制来通知执行器。
数据结构设计
首先定义我们的定时器未来类型:
pub struct TimerFuture {
shared_state: Arc<Mutex<SharedState>>,
}
struct SharedState {
completed: bool,
waker: Option<Waker>,
}
这里使用了Arc<Mutex<..>>来实现线程间的安全共享:
completed标志表示定时器是否已完成waker存储了用于唤醒任务的Waker
Future实现
定时器未来的核心是实现Futuretrait:
impl Future for TimerFuture {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut shared_state = self.shared_state.lock().unwrap();
if shared_state.completed {
Poll::Ready(())
} else {
shared_state.waker = Some(cx.waker().clone());
Poll::Pending
}
}
}
实现要点:
- 每次轮询时检查
completed状态 - 如果未完成,更新Waker并返回
Pending - 如果已完成,返回
Ready
定时器构造
创建定时器的API会启动一个新线程来实际执行等待:
impl TimerFuture {
pub fn new(duration: Duration) -> Self {
let shared_state = Arc::new(Mutex::new(SharedState {
completed: false,
waker: None,
}));
let thread_shared_state = shared_state.clone();
thread::spawn(move || {
thread::sleep(duration);
let mut shared_state = thread_shared_state.lock().unwrap();
shared_state.completed = true;
if let Some(waker) = shared_state.waker.take() {
waker.wake();
}
});
TimerFuture { shared_state }
}
}
关键步骤:
- 创建共享状态
- 启动后台线程执行实际等待
- 等待完成后设置状态并唤醒任务
Waker的最佳实践
在实际使用Waker时,有几个重要原则需要遵循:
- 及时更新Waker:每次轮询时都应更新Waker,因为任务可能已经移动到不同的执行上下文
- 避免过度唤醒:只在真正需要时才调用
wake(),减少不必要的调度开销 - 正确处理Waker生命周期:确保Waker在不再需要时被正确清理
总结
通过async-book中的定时器未来示例,我们深入理解了Waker在异步编程中的关键作用。Waker机制使得Rust的异步编程模型既高效又灵活,能够在不阻塞线程的情况下实现高效的协作式多任务。
掌握Waker的工作原理对于编写高性能的异步代码至关重要,它允许我们精确控制任务的调度时机,从而构建出响应迅速且资源利用率高的异步应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
暂无简介
Dart
633
143
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
243
316
Ascend Extension for PyTorch
Python
194
212