Autotest 开源项目教程
2024-10-09 20:28:47作者:劳婵绚Shirley
1. 项目介绍
Autotest 是一个用于 Linux 平台的全自动化测试框架。它主要用于测试 Linux 内核,但也适用于其他功能,如硬件资格认证。Autotest 是一个开源项目,遵循 GPL 许可证,由多个组织(包括 Google、IBM、Red Hat 等)共同开发和使用。
Autotest 由多个模块组成,包括:
- Autotest Client: 执行测试的引擎,适用于单个开发者执行测试。
- Autotest Server: 控制远程机器上的测试执行,适用于多机器测试场景。
- Autotest Database: 存储测试结果的数据库组件。
- Autotest Scheduler: 调度测试任务的工具。
- Autotest Web Frontend: 基于 Django 和 GWT 的 Web 应用,用于可视化测试结果。
- Autotest Command Line Interface: 基于 Python 的命令行界面。
2. 项目快速启动
2.1 安装 Autotest Client
对于急于上手的用户,可以参考以下步骤快速安装 Autotest Client:
# 克隆项目仓库
git clone https://github.com/autotest/autotest.git
# 进入项目目录
cd autotest
# 安装依赖
sudo apt-get install python-sphinx
# 构建文档
make -C documentation html
# 启动浏览器查看文档
[your-browser] docs/build/html/index.html
2.2 安装 Autotest Server
对于使用 Red Hat 系统的用户,可以参考以下步骤快速安装 Autotest Server:
# 克隆项目仓库
git clone https://github.com/autotest/autotest.git
# 进入项目目录
cd autotest
# 安装依赖
sudo yum install python-sphinx
# 构建文档
make -C documentation html
# 启动浏览器查看文档
[your-browser] docs/build/html/index.html
对于使用 Ubuntu/Debian 系统的用户,可以参考以下步骤快速安装 Autotest Server:
# 克隆项目仓库
git clone https://github.com/autotest/autotest.git
# 进入项目目录
cd autotest
# 安装依赖
sudo apt-get install python-sphinx
# 构建文档
make -C documentation html
# 启动浏览器查看文档
[your-browser] docs/build/html/index.html
3. 应用案例和最佳实践
3.1 应用案例
Autotest 广泛应用于以下场景:
- Linux 内核测试: 通过自动化测试框架,确保 Linux 内核的稳定性和性能。
- 硬件资格认证: 在新硬件发布前,通过 Autotest 进行全面的自动化测试。
- 多机器测试: 在分布式环境中,使用 Autotest Server 控制多个测试节点,进行大规模测试。
3.2 最佳实践
- 模块化测试: 将测试用例模块化,便于管理和复用。
- 自动化报告: 使用 Autotest Web Frontend 生成自动化测试报告,便于分析和分享。
- 持续集成: 将 Autotest 集成到 CI/CD 流程中,确保每次代码提交都能自动触发测试。
4. 典型生态项目
Autotest 的生态系统中包含以下典型项目:
- Avocado: 由 Autotest 团队开发的下一代测试自动化框架,提供更高级的功能和更好的用户体验。
- Django: 用于构建 Autotest Web Frontend 的后端框架,提供强大的 Web 开发能力。
- GWT: 用于构建 Autotest Web Frontend 的前端框架,提供高效的 Web 应用开发体验。
通过这些生态项目,Autotest 能够提供更全面、更高效的自动化测试解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248