Higress网关内网负载均衡配置实践指南
背景介绍
在云原生架构中,Higress作为阿里巴巴开源的云原生网关,默认部署时会自动创建公网负载均衡器(LB)以提供外部访问能力。然而在实际企业场景中,出于安全隔离和内部服务调用的需求,我们经常需要将网关服务配置为仅通过内网负载均衡暴露。
核心配置原理
Higress网关的网络暴露方式本质上是通过Kubernetes Service资源实现的,其网络行为由Service的annotations控制。在云服务商的环境中,这些annotations会被对应的cloud-controller-manager识别并创建相应的负载均衡资源。
内网LB配置方案
通过深入分析Higress的Helm chart配置结构,我们发现可以通过以下方式实现内网负载均衡配置:
-
安装时配置:在初始安装Higress时,通过设置
higress-core.gateway.service.annotations
参数,添加云厂商特定的内网LB注解 -
运行时修改:对于已部署的环境,可以直接修改Higress-gateway服务的annotations,添加如下典型配置:
- 阿里云:
service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type: intranet
- AWS:
service.beta.kubernetes.io/aws-load-balancer-scheme: internal
- Azure:
service.beta.kubernetes.io/azure-load-balancer-internal: "true"
- 阿里云:
升级兼容性说明
经过实际验证,当通过Helm升级Higress时,只要不修改或覆盖原有的service配置,已存在的负载均衡配置(包括内网类型)将会被保留。这意味着:
- 初始安装后手动修改为内网LB的方案是可行的
- 后续版本升级不会改变现有的网络配置
- 建议在values.yaml中显式声明LB配置以保证配置可追溯
最佳实践建议
- 环境区分:在values.yaml中为不同环境(dev/test/prod)预设对应的网络配置
- 配置版本化:将网络配置纳入版本控制系统管理
- 安全加固:结合网络策略限制只允许特定CIDR访问内网LB
- 监控配置:确保内网LB的监控指标能够被采集
技术实现细节
Higress网关的网络暴露实际上由多个Kubernetes资源协同完成:
- Service资源定义LB的基本属性
- IngressClass定义入口控制器行为
- NetworkPolicy控制网络流量规则(如启用)
当云厂商的CCM(Cloud Controller Manager)监听到Service资源创建/更新时,会根据annotations的配置创建对应的负载均衡器。内网LB与公网LB的主要区别在于:
- 网络平面不同(VPC内网vs公网)
- 安全组/ACL策略不同
- 计费方式可能不同
总结
Higress网关提供了灵活的网络暴露方案,通过合理配置Service annotations可以轻松实现公网/内网负载均衡的切换。理解这一机制后,运维团队可以根据实际业务需求,在保证安全性的前提下灵活调整网关的网络拓扑结构。建议在生产环境中采用Infrastructure as Code的方式管理这些网络配置,以确保环境的一致性和可追溯性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









