LLaMA-Factory项目中Qwen2.5-VL微调时的参数尺寸不匹配问题解析
2025-05-02 03:57:23作者:何将鹤
问题背景
在使用LLaMA-Factory项目对Qwen2.5-VL-3B-Instruct模型进行微调时,用户遇到了参数尺寸不匹配的错误。具体表现为在加载LoRA适配器时,模型期望的权重尺寸与实际检查点中的权重尺寸不一致。
错误表现
主要出现两种类型的尺寸不匹配错误:
-
自注意力层的q_proj参数不匹配:
- 期望尺寸:torch.Size([64, 2048])
- 检查点尺寸:torch.Size([64, 1536])
-
视觉嵌入层的patch_embed.proj.weight参数不匹配:
- 期望尺寸:torch.Size([0])
- 检查点尺寸:torch.Size([1280, 3, 2, 14, 14])
问题原因分析
这类参数尺寸不匹配问题通常由以下几个原因导致:
-
模型版本不一致:微调时使用的模型版本与预训练模型版本不同,导致架构变化。
-
配置参数差异:微调时设置的hidden_size等参数与预训练模型不匹配。
-
输出目录冲突:之前微调尝试的残留文件与新配置产生冲突。
-
LoRA适配器配置:LoRA的rank、alpha等超参数设置不当。
解决方案
根据项目维护者的建议和用户反馈,以下是有效的解决方法:
-
使用新的输出目录:最简单的解决方案是更换output_dir参数值,避免与之前训练的残留文件冲突。
-
检查模型配置一致性:
- 确保微调时使用的模型与预训练模型完全一致
- 验证hidden_size等关键参数设置正确
-
LoRA配置调整:
- 检查lora_rank和lora_alpha参数
- 确保lora_target设置合理
-
完整重新训练:
- 删除所有缓存和检查点文件
- 从干净的模型开始重新训练
技术建议
对于视觉-语言多模态模型的微调,还需要特别注意:
-
图像处理相关参数(如image_resolution)需要与模型预期一致
-
确保媒体目录(media_dir)设置正确
-
多模态模型通常需要更大的显存,合理设置batch_size和gradient_accumulation_steps
总结
Qwen2.5-VL这类多模态大模型的微调过程中,参数尺寸不匹配是常见问题。通过确保环境一致性、使用干净的输出目录以及合理配置LoRA参数,可以有效解决这类问题。对于更复杂的视觉嵌入层不匹配问题,可能需要检查模型加载方式和预处理流程是否规范。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134