深入理解Ragbits项目中的稀疏向量存储技术
2025-06-05 14:31:58作者:毕习沙Eudora
稀疏向量概述
稀疏向量是一种特殊的数据表示方法,它只存储向量中的非零值及其对应的索引位置。这与密集向量形成鲜明对比,后者会存储向量中的所有值,无论是否为零。在Ragbits项目中,稀疏向量通过SparseVector和SparseEmbedder类得到了原生支持。
稀疏向量的核心特点
- 高效存储:仅保留非零元素,大幅减少内存占用
- 计算优化:针对稀疏结构的特殊算法可显著提升运算效率
- 语义明确:每个维度通常对应特定token或特征,解释性强
稀疏向量的优势与应用场景
内存效率优势
当向量维度极高且大多数元素为零时,稀疏表示可节省90%以上的存储空间。例如在自然语言处理中,词袋模型的向量维度可能达到数万,但单个文档的向量通常只有少量非零元素。
搜索性能提升
在混合搜索系统中,稀疏向量与密集向量配合使用可以:
- 提高召回率:捕捉不同维度的相似性特征
- 增强相关性:结合词频统计等传统IR指标
- 支持复杂查询:处理布尔逻辑和短语匹配
典型应用场景
- 大规模文本检索系统
- 高维特征空间中的相似性计算
- 需要解释性强的embedding场景
- 资源受限的部署环境
Ragbits中的稀疏向量实现
核心组件
- SparseVector类:基础数据结构,存储索引和值
- SparseEmbedder接口:生成稀疏embedding的抽象
- 具体实现类:
- BagOfTokens:基于token计数的简单实现
- FastEmbedSparseEmbedder:基于FastEmbed的高效实现
向量存储支持
Ragbits目前支持两种后端存储稀疏向量:
-
内存存储(InMemoryVectorStore)
- 特点:零配置、快速启动
- 适用场景:原型开发、小型数据集测试
-
Qdrant向量数据库(QdrantVectorStore)
- 特点:生产级性能、持久化存储
- 适用场景:大规模生产环境
实战指南
创建稀疏Embedder
使用BagOfTokens
from ragbits.core.embeddings.sparse import BagOfTokens, BagOfTokensOptions
# 配置GPT-4 tokenizer并设置最小token计数
sparse_embedder = BagOfTokens(
default_options=BagOfTokensOptions(
model_name="gpt-4",
min_token_count=2 # 忽略低频token
)
)
使用FastEmbed
from ragbits.core.embeddings.sparse.fastembed import FastEmbedSparseEmbedder
# 使用预训练模型初始化
sparse_embedder = FastEmbedSparseEmbedder(
model_name="BAAI/bge-small-en-v1.5" # 高效稀疏编码模型
)
集成向量存储
内存存储示例
from ragbits.core.vector_stores.in_memory import InMemoryVectorStore
import uuid
# 初始化存储
vector_store = InMemoryVectorStore(embedder=sparse_embedder)
# 存储文档
await vector_store.store([
VectorStoreEntry(
id=uuid.uuid4(),
text="Ragbits稀疏向量使用指南"
)
])
# 检索相似内容
results = await vector_store.retrieve("如何实现高效向量检索")
Qdrant集成示例
from qdrant_client import AsyncQdrantClient
from ragbits.core.vector_stores.qdrant import QdrantVectorStore
# 配置Qdrant客户端
vector_store = QdrantVectorStore(
client=AsyncQdrantClient(location=":memory:"),
index_name="sparse_demo",
embedder=sparse_embedder,
distance_method=Distance.COSINE # 使用余弦相似度
)
直接操作稀疏向量
from ragbits.core.embeddings.sparse import SparseVector
# 创建稀疏向量
doc_vector = SparseVector(
indices=[1024, 2048, 4096], # 特征维度索引
values=[0.75, 0.82, 0.91] # 对应权重值
)
# 该向量表示在1024、2048和4096维度有显著特征
性能优化建议
- 维度控制:合理设置min_token_count等阈值,避免过度稀疏
- 混合索引:结合稀疏和密集向量实现互补优势
- 批量操作:利用向量存储的批量API提高吞吐量
- 监控调优:定期分析稀疏度和查询延迟指标
总结
Ragbits项目的稀疏向量实现为处理高维稀疏数据提供了完整解决方案。通过灵活的Embedder接口和多种存储后端支持,开发者可以轻松构建高效的语义检索系统。理解稀疏向量的特性和适用场景,能够帮助我们在实际项目中做出更合理的技术选型。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137