深入理解Ragbits项目中的稀疏向量存储技术
2025-06-05 05:17:16作者:毕习沙Eudora
稀疏向量概述
稀疏向量是一种特殊的数据表示方法,它只存储向量中的非零值及其对应的索引位置。这与密集向量形成鲜明对比,后者会存储向量中的所有值,无论是否为零。在Ragbits项目中,稀疏向量通过SparseVector和SparseEmbedder类得到了原生支持。
稀疏向量的核心特点
- 高效存储:仅保留非零元素,大幅减少内存占用
- 计算优化:针对稀疏结构的特殊算法可显著提升运算效率
- 语义明确:每个维度通常对应特定token或特征,解释性强
稀疏向量的优势与应用场景
内存效率优势
当向量维度极高且大多数元素为零时,稀疏表示可节省90%以上的存储空间。例如在自然语言处理中,词袋模型的向量维度可能达到数万,但单个文档的向量通常只有少量非零元素。
搜索性能提升
在混合搜索系统中,稀疏向量与密集向量配合使用可以:
- 提高召回率:捕捉不同维度的相似性特征
- 增强相关性:结合词频统计等传统IR指标
- 支持复杂查询:处理布尔逻辑和短语匹配
典型应用场景
- 大规模文本检索系统
- 高维特征空间中的相似性计算
- 需要解释性强的embedding场景
- 资源受限的部署环境
Ragbits中的稀疏向量实现
核心组件
- SparseVector类:基础数据结构,存储索引和值
- SparseEmbedder接口:生成稀疏embedding的抽象
- 具体实现类:
- BagOfTokens:基于token计数的简单实现
- FastEmbedSparseEmbedder:基于FastEmbed的高效实现
向量存储支持
Ragbits目前支持两种后端存储稀疏向量:
-
内存存储(InMemoryVectorStore)
- 特点:零配置、快速启动
- 适用场景:原型开发、小型数据集测试
-
Qdrant向量数据库(QdrantVectorStore)
- 特点:生产级性能、持久化存储
- 适用场景:大规模生产环境
实战指南
创建稀疏Embedder
使用BagOfTokens
from ragbits.core.embeddings.sparse import BagOfTokens, BagOfTokensOptions
# 配置GPT-4 tokenizer并设置最小token计数
sparse_embedder = BagOfTokens(
default_options=BagOfTokensOptions(
model_name="gpt-4",
min_token_count=2 # 忽略低频token
)
)
使用FastEmbed
from ragbits.core.embeddings.sparse.fastembed import FastEmbedSparseEmbedder
# 使用预训练模型初始化
sparse_embedder = FastEmbedSparseEmbedder(
model_name="BAAI/bge-small-en-v1.5" # 高效稀疏编码模型
)
集成向量存储
内存存储示例
from ragbits.core.vector_stores.in_memory import InMemoryVectorStore
import uuid
# 初始化存储
vector_store = InMemoryVectorStore(embedder=sparse_embedder)
# 存储文档
await vector_store.store([
VectorStoreEntry(
id=uuid.uuid4(),
text="Ragbits稀疏向量使用指南"
)
])
# 检索相似内容
results = await vector_store.retrieve("如何实现高效向量检索")
Qdrant集成示例
from qdrant_client import AsyncQdrantClient
from ragbits.core.vector_stores.qdrant import QdrantVectorStore
# 配置Qdrant客户端
vector_store = QdrantVectorStore(
client=AsyncQdrantClient(location=":memory:"),
index_name="sparse_demo",
embedder=sparse_embedder,
distance_method=Distance.COSINE # 使用余弦相似度
)
直接操作稀疏向量
from ragbits.core.embeddings.sparse import SparseVector
# 创建稀疏向量
doc_vector = SparseVector(
indices=[1024, 2048, 4096], # 特征维度索引
values=[0.75, 0.82, 0.91] # 对应权重值
)
# 该向量表示在1024、2048和4096维度有显著特征
性能优化建议
- 维度控制:合理设置min_token_count等阈值,避免过度稀疏
- 混合索引:结合稀疏和密集向量实现互补优势
- 批量操作:利用向量存储的批量API提高吞吐量
- 监控调优:定期分析稀疏度和查询延迟指标
总结
Ragbits项目的稀疏向量实现为处理高维稀疏数据提供了完整解决方案。通过灵活的Embedder接口和多种存储后端支持,开发者可以轻松构建高效的语义检索系统。理解稀疏向量的特性和适用场景,能够帮助我们在实际项目中做出更合理的技术选型。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
199
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
279
98
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210