在Python中直接使用Piper TTS实现文本转语音
2025-05-26 02:19:48作者:江焘钦
Piper是一个开源的文本转语音(TTS)引擎,以其高质量的语音合成能力而闻名。虽然Piper通常通过命令行界面使用,但许多开发者希望能在Python程序中直接调用其功能,而不必依赖终端或子进程。本文将介绍如何在Python中直接使用Piper的API实现文本转语音功能。
Piper Python API基础使用
Piper提供了Python原生接口,允许开发者在代码中直接加载语音模型并合成语音。以下是一个完整的示例代码:
import piper
from pathlib import Path
import wave
# 配置模型路径和参数
model_dir = '/path/to/models/'
model_name = 'fr_FR-upmc-medium'
synthesis_params = {
"speaker_id": 0, # 说话人ID(多说话人模型可用)
"length_scale": 1.0, # 控制语速(值越大语速越慢)
"noise_scale": 1.0, # 控制发音变化程度
"noise_w": 1.0, # 控制音素时长变化
"sentence_silence": 0.0 # 句间静默时长(秒)
}
# 初始化Piper语音引擎
voice = piper.PiperVoice.load(
model_path=model_dir + model_name + ".onnx",
config_path=model_dir + model_name + ".onnx.json",
use_cuda=False # 是否使用CUDA加速
)
# 要合成的文本
text = "你好,这是一个测试句子"
# 输出WAV文件路径
output_path = Path(model_dir) / 'output.wav'
# 合成语音并保存为WAV文件
with wave.open(str(output_path), "wb") as wav_file:
voice.synthesize(text, wav_file, **synthesis_params)
关键参数解析
-
模型加载参数:
model_path: ONNX模型文件路径config_path: 模型配置文件路径use_cuda: 是否使用GPU加速(需正确配置CUDA环境)
-
语音合成参数:
speaker_id: 对于支持多说话人的模型,可指定不同说话人length_scale: 控制语速,大于1会减慢语速,小于1会加快语速noise_scale和noise_w: 控制语音的自然度和变化程度sentence_silence: 在句子间插入静默时间(秒)
高级用法
实时语音输出
除了保存为文件,Piper也可以直接输出音频数据流,用于实时播放:
import io
import sounddevice as sd
# 创建内存中的WAV文件
wav_io = io.BytesIO()
with wave.open(wav_io, 'wb') as wav_file:
voice.synthesize(text, wav_file, **synthesis_params)
# 重置指针并读取音频数据
wav_io.seek(0)
with wave.open(wav_io, 'rb') as wav_file:
frames = wav_file.readframes(wav_file.getnframes())
sd.play(frames, wav_file.getframerate())
sd.wait()
多语言支持
Piper支持多种语言的语音模型,只需加载对应的模型文件即可:
# 加载英语模型
en_voice = piper.PiperVoice.load(
model_path='/path/to/en_US-model.onnx',
config_path='/path/to/en_US-model.onnx.json'
)
# 加载中文模型
zh_voice = piper.PiperVoice.load(
model_path='/path/to/zh_CN-model.onnx',
config_path='/path/to/zh_CN-model.onnx.json'
)
性能优化建议
- 模型选择: 根据需求选择适当的模型大小,较大模型质量更高但速度较慢
- 批处理: 如需合成大量文本,可以考虑批量处理以提高效率
- GPU加速: 在支持CUDA的环境下启用
use_cuda=True可显著提升合成速度 - 内存管理: 长时间运行的应用程序应注意及时释放不再使用的语音模型
通过Python API直接使用Piper TTS,开发者可以更灵活地将语音合成功能集成到各种应用程序中,无需依赖命令行接口,提高了开发效率和程序的可维护性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759