首页
/ 探索未来生物科学:AlphaFold3 — 结构预测的新里程碑

探索未来生物科学:AlphaFold3 — 结构预测的新里程碑

2024-08-10 05:50:39作者:鲍丁臣Ursa

AlphaFold3 Banner

AlphaFold3 是一项革命性的技术,它将生物分子结构预测提升到了新的高度。这个开源项目源自论文“Accurate structure prediction of biomolecular interactions with AlphaFold3”,现在以 PyTorch 的形式向公众开放。如果你对蛋白质结构、生物信息学或深度学习感兴趣,那么这个项目无疑是你的理想选择。让我们深入了解一下AlphaFold3的魅力所在。

项目介绍

AlphaFold3 是一款基于神经网络的算法,能够准确预测蛋白质和生物大分子的三维结构。它不仅在单链蛋白结构预测上表现优秀,还能处理复杂的多链和核糖核酸结构,甚至包括共价修饰和配体预测。该项目提供了一个易于安装的包,并包含了全面的文档和示例代码,让研究人员可以轻松地在自己的环境中运行AlphaFold3。

技术分析

AlphaFold3的核心是其创新的 Genetic Diffusion 模块,它直接作用于原子坐标,通过递归去噪过程来构建蛋白质结构。此外,它采用了 PairFormer 替代了传统的EvoFormer,这一改进使得模型能更有效地处理成对表示和单一表示。在训练过程中,模型采用了一种称为交叉蒸馏的方法,以避免因扩散模型可能产生的“幻象”(hallucination)结构。

在计算方面,AlphaFold3利用了 diffusion rollout 算法,该算法在训练时以较大的步长进行全结构生成,然后通过一个信心头(confidence head)预测原子和对的误差,以实现早期停止策略,从而提高预测精度。整个架构还包括一个输入嵌入器、模板模块和MSA嵌入模块,这些都借鉴了Alphafold2的OpenFold实现。

应用场景

AlphaFold3的技术突破为多个领域带来了前所未有的可能性。从药物发现到基础生物学研究,从生物工程到蛋白质设计,这个工具都能提供至关重要的洞察力。例如,它可以用于预测蛋白质之间的相互作用,这对于理解细胞内的复杂网络至关重要。此外,对于那些传统实验难以解析的大型蛋白质复合物,AlphaFold3也能发挥关键作用。

项目特点

  • 准确预测: 针对多种生物大分子结构,AlphaFold3的预测准确性显著提高,能够处理数千个残基的核糖核酸结构。

  • 高效处理: 利用创新的Genetic Diffusion和PairFormer模块,模型能处理复杂的数据表示,直接作用于原子坐标。

  • 易用性: 提供直观的Python API和Docker镜像,简化了安装和部署流程。

  • 广泛适用: 支持多种应用场景,包括但不限于蛋白质结构预测、药物研发和生物信息学研究。

  • 跨学科融合: 结合了深度学习、生物物理和化学的知识,推动了生物学、计算机科学和人工智能的边界交融。

如果你想深入探索蛋白质结构的奥秘,或者在相关领域寻求技术创新,AlphaFold3无疑是一个值得尝试的工具。立即加入我们的社区,开启探索之旅,共享知识,共创未来!

探索未来生物科学:AlphaFold3 — 结构预测的新里程碑

参考文献

@article{Abramson2024-fj,
  title    = "Accurate structure prediction of biomolecular interactions with
              {AlphaFold} 3",
  author   = "Abramson, Josh and Adler, Jonas and Dunger, Jack and Evans,
              Richard and Green, Tim and Pritzel, Alexander and Ronneberger,
              Olaf and Willmore, Lindsay and Ballard, Andrew J and Bambrick,
              Joshua and Bodenstein, Sebastian W and Evans, David A and Hung,
              Chia-Chun and O'Neill, Michael and Reiman, David and
              Tunyasuvunakool, Kathryn and Wu, Zachary and {\v Z}emgulyt{\.e},
              Akvil{\.e} and Arvaniti, Eirini and Beattie, Charles and
              Bertolli, Ottavia and Bridgland, Alex and Cherepanov, Alexey and
              Congreve, Miles and Cowen-Rivers, Alexander I and Cowie, Andrew
              and Figurnov, Michael and Fuchs, Fabian B and Gladman, Hannah and
              Jain, Rishub and Khan, Yousuf A and Low, Caroline M R and Perlin,
              Kuba and Potapenko, Anna and Savy, Pascal and Singh, Sukhdeep and
              Stecula, Adrian and Thillaisundaram, Ashok and Tong, Catherine
              and Yakneen, Sergei and Zhong, Ellen D and Zielinski, Michal and
              {\v Z}{\'\i}dek, Augustin and Bapst, Victor and Kohli, Pushmeet
              and Jaderberg, Max and Hassabis, Demis and Jumper, John M",
  journal  = "Nature",
  month    =  may,
  year     =  2024
}
登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8